FINAL REPORT

Development and Dissemination of a High-
Resolution National Climate Change Dataset

Katharine Hayhoe, Texas Tech University (PI)

With contributions from Anne Stoner, Xiaohui Yang, Caleb Crow, Ranjini
Swaminathan, Ian Scott-Fleming, Jung-Hee Ryu, Rodica Gelca, Sharmistha Swain,
and the Texas Tech University High Performance Computing Center

Agreement Number G10AC00582

Date of Report: March 22,2013
Period of Time Covered by Report: August 1, 2009 to March 31, 2013
Actual total cost: $149,368.00



PUBLIC SUMMARY

Climate change is a global problem whose impacts are experienced at the local to regional
scale. For this reason, the first step in assessing the impacts of climate change—on a
species or an ecosystem, on water resources, or on an aspect of human society such as
energy demand or agriculture—is often to develop projections of how temperature,
precipitation, and other important aspects of climate might expected to change in the
future at the location of interest.

Global climate models produce future climate projections that are usually too coarse to
capture the local characteristics that determine climate at any given location: the proximity
of that location to a large body of water, for example, which would moderate extreme
temperatures; or whether the location is in the arid “rain shadow” of a mountain.

In this project, we used an advanced statistical downscaling method that combines high-
resolution observations with outputs from 16 different global climate models based on 4
future emission scenarios to generate the most comprehensive dataset of daily
temperature and precipitation projections available for climate change impacts in the U.S.
The gridded dataset covers the continental United States, southern Canada and northern
Mexico at one-eighth degree resolution and Alaska at one-half degree resolution. We also
quality-controlled observations from over 10,000 long-term weather stations and
generated projections for each of these locations.

The high-resolution projections produced by this work have been rigorously quality-
controlled for both errors and biases in the global climate and statistical downscaling
models. We also calculated projected future changes in a broad range of impact-relevant
indicators, from seasonal temperature to extreme precipitation days. The results of the
error and bias tests and the indicator calculations are made available as part of this
database.
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TECHNICAL SUMMARY

This project has produced a database of high-resolution projections of daily maximum
and minimum temperature and 24-hour cumulative precipitation suitable for use as
input to a range of ecological, hydrological, and societal studies to assess the impacts of
climate change at the local to regional scale. The database consists of daily projections from
1960 to 2099 from 16 global models archived by the Coupled Model Intercomparison
Project version 3 (CMIP3) and will be supplemented by new model simulations from
CMIP5 as available. Future CMIP3 projections are based on four different emission
scenarios (Alfi higher, A2 mid-high, A1B mid-low and B1 lower) from the
Intergovernmental Panel on Climate Change’s Special Report on Emission Scenarios.
Variables are available for a regular one-eighth degree grid covering the continental U.S,,
southern Canada, and northern Mexico, as well as for over 8,000 long-term weather
stations in North America. The dataset consists of more than 6 terabytes of data and was
generating using over 2 million CPUs of parallel computing time provided free of charge by
the Texas Tech University High Performance Computing Center.

Continuous daily outputs for the period 1960 to 2099 were obtained from 11 CMIP3 global
climate models (GCMs): NCAR-CCM3, CCCMA-CGCM3_T47, CCCMA-CGCM3_T63, CNRM,
ECHAMS5, ECHO, GFDL CM2.0, GFDL CM2.1, UKMO-HadCM3, UKMO-HadGEM1 and NCAR-
PCM. Limited daily time slices were obtained for 5 additional models: CSIRO, GISS_AOM,
MIROC (high-res), MIROC (med-res), and MRI_CGCMZ2. Not every model had daily outputs
available for each emissions scenario; the total number of model/scenario combinations
available is 48 for temperature and 45 for precipitation. Although the GCM outputs
conformed to the standards of submission to CMIP3, during the research a number of
errors were discovered in the original GCM files including missing data, erroneous data
values, misnamed files, and (for one model) a consistent failure to simulate observed
temperature and precipitation over the continental U.S. For that reason, the project was
expanded to include evaluation and quality control of all GCM inputs.

Gridded daily meteorological data for the period 1960 to 2000 at one-eighth degree over
the continental U.S. and one-half degree over Alaska were obtained from the database
described in Maurer et al. (2002), and station data from the Global Historical Climatology
Network (GHCN), enhanced by additional data records in sparse areas from the NWS-NCDC
Cooperative Observer Network (COOP) and the U.K. Met Office Integrated Data Archive
System (MIDAS). Although most station data had already been quality controlled, this
research revealed that none of the quality control standards for these datasets were
adequate for the purpose of downscaling. Specifically, the existence of even one anomalous
extreme value could skew the statistical downscaling method, producing unreliable results
for that location. Hence, the project was expanded to include development of a
rigorous quality control algorithm to pre-filter all station data.

Initial downscaling using raw GCM output to the regular one-eighth degree grid revealed
three flaws in downscaling methodology that had not been immediately apparent in
previous limited-location studies:

1. Hundreds of years’ worth of computing time was required to generate high-resolution
climate projections for 75,000 grid cells, over 8,000 weather stations, 48 climate
scenarios and 3 variables. This problem was addressed by professional optimization of



the downscaling code and parallelization with unlimited use of over 2 million CPUs
from the 1024-core High Performance Computing Center at Texas Tech University.

2. Temperature fields from GCMs contained low-level noise that degraded the quality of
the fit. This problem was addressed by pre-filtering GCM outputs using principal
component analysis. The percentage of variance retained, 97 percent, was determined
empirically by optimizing the fit of the statistical model. Filtered temperature fields
were then used to downscale both gridded and station-based observations.

3. Downscaling grid cells independently for precipitation generated an unacceptable level
of pixilation in individual rainy day fields for high precipitation events due to the
sensitivity of the downscaling model at the tails of the distribution. This problem was
addressed by: (a) modifying the precipitation downscaling routine to train the
statistical model using a 3x3 grid surrounding each grid cell, thus ensuring spatial
continuity at the extremes of the distribution, (b) spatially interpolating GCM output
fields to the scale of the observations before using as predictors, and (c) as available,
using GCM convective and large-scale precipitation outputs separately and together as
predictors for individual grids.

After downscaling, the outputs were subjected to a comprehensive set of tests for 22 types
of errors and 74 types of biases in the high-resolution climate projections. This quality
control process clearly indicates that the downscaling method is capable of producing
reliable information that closely replicates observations. At the same time, this analysis
was able to quantify how the skill of the downscaling—particularly for extreme values—
also depends on the performance of the original GCM and on the range of conditions
incorporated by the historical observations used to train the downscaling model.

In addition to the bias and error analysis, 114 impact-relevant indicators, from seasonal
temperature and precipitation to dry days and heat waves, were calculated for five time
periods (1960-1979, 1990-2009, 2020-2039, 2050-2069, 2080-2099) as well as for global
mean temperature intervals of +1°C, +2°C and +3°C relative to 1971-2000. Projected
changes in temperature-related indicators, in heavy precipitation, and in dry days are all
greater by end-of-century, under higher emissions, and for higher global mean temperature
change as compared to earlier projections under lower emissions or lower global
temperature change.

This research has resulted in the most extensively tested set of high-resolution
climate projections available for scientific research in the U.S. The projections
generated by this project will be used as input to the 2014 U.S. National Climate
Assessment as well as a host of other regional projects around the country. It has also
contributed significantly towards understanding the process of and uncertainties
involved in downscaling. The knowledge of downscaling acquired during this project is
already being used as input to CSC-funded research on statistical downscaling model inter-
comparisons, as well as the National Climate Predictions and Projections (NCPP) Platform.
Finally, the computing framework established by this project is now being applied to
downscale new IPCC AR5/CMIP5 GCM outputs (in progress). As these results become
available, they will be subjected to the same rigorous error and bias tests as this data, and
outputs can be provided to the USGS GeoData Portal if desired.



PURPOSE AND OBIJECTIVES

The purpose of this work was to create a comprehensive web-based dataset of high-
resolution climate change projections that could be used to assess the impacts of climate
change on ecosystems in the continental United States. The dataset was generated by
applying advanced statistical downscaling methods to a comprehensive selection of global
climate model simulations from the IPCC AR4/CMIP3 database. The work allows for
consistent impact assessments at the scale of the most critical ecosystem processes
through downscaling projections of daily temperature and precipitation across the
continental U.S. It also enables scientists and managers to easily access, manipulate and
download data relevant to modeling climate change impacts on ecosystems through a
common web-based data portal. Most importantly, the dataset generated by this work
allows impact assessments to be based on the same common data set, producing consistent
results to be compared across regions and ecosystems, addressing NCCWSC Goals 1 and 4
by developing and providing the high-resolution climate change datasets necessary for
ecosystem impact studies.

All the objectives of the original work were met and substantially expanded to address
questions, concerns, and needs that arose in preliminary evaluation and application of the
high-resolution projections. In addition to the work originally proposed and supported by
the funded project, the following additional tasks were also accomplished:

1. A new pre-processing approach was developed to remove spurious noise in global
climate model daily temperature fields and spatially interpolate all global model output
fields prior to their use in statistical downscaling. This approach can be used to improve
inputs to any downscaling method in the future. Its application significantly improved
biases in downscaled simulations, particularly for cold temperatures and for spatial
patterns of precipitation.

2. The ARRM downscaling model was modified to allow for multiple precipitation
predictors (convective, large-scale, and total precipitation). This modification enabled
the model to better resolve the drivers of precipitation in summer vs. winter and in
warmer vs. colder climates, and reduced biases in seasonal and extreme precipitation.

3. After identification of pixilation problems with precipitation extremes, the ARRM
downscaling model was modified to train gridded precipitation models on a 3x3 grid in
order to stabilize the statistical fit at the tails of the distribution and all precipitation
downscaling was re-run with the new code. This modification significantly reduced
high-frequency noise, or pixilation, for individual storms, resulting in spatial statistics
for downscaled data that closely resembled observed.

4. An analysis code to assess the spatial dependence of daily precipitation fields in
terms of the visual appearance of rain storms, the distance between pixel values, and
Moran’s [, a measure of spatial coherence, was developed to evaluate model
simulations. This is a generalizable code that can be used to test and compare the
coherence of any spatial data field.

5. The computing framework for conducting the downscaling was professionally
optimized by Dr. Matthew Pratola, an expert in R optimization, and parallelized to
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enable application using the Texas Tech University High Performance Computing
Center (TTU-HPCC) resources. This optimized computing framework will be used for
future downscaling of CMIP5 simulations.

A rigorous quality control and nearest-neighbor process was developed to identify
and remove erroneous observed temperature and precipitation values in the station-
based observations. This is a generalizable code that can be used to quality control any
observational dataset.

Additional observational datasets (MIDAS, NCDC) were obtained, processed, and
incorporated into this dataset. MIDAS was not available in daily format; sub-daily data
was extracted and fit to a diurnal function before being evaluated relative to WMO
standards. MIDAS and all additional datasets were processed using the quality control
framework in order to provide as many neighbors as possible for existing GHCN
locations. Long-term records from these datasets have also been downscaled and are now
incorporated into the database of high-resolution projections, expanding the original
geographic scope of the analysis to encompass the entire continent of North America.

A comprehensive error and bias analysis code was built which evaluates 22 types of
errors and 74 types of biases in the high-resolution climate projections relative to
observations. This is a generalizable code that can be used to quality control any
downscaled dataset or to compare any observational datasets.

A secondary indicator calculation code was written to calculate 114 seasonal and
annual mean and extreme indicators relevant to impact analyses. These indicators
include seasonal temperature and precipitation, multi-day events, heavy precipitation
and drought extremes, high and low temperature extremes, growing season, degree-
days, etc. This is a generalizable code that can be used to calculate secondary indicators
for any set of observational, global model, or downscaled data, gridded or for individual
locations.

Future projections were analyzed in terms of future time periods and projected
changes per degree global mean temperature change. Maps and data files for indicators
have been provided as accompanying information to the database.

A brief users guide to high-resolution climate projections was written after many user-
reported “errors” in the data were found to be misinterpretations or misuse of the data
(e.g., assuming that any given simulated day should match observed conditions on that
day, or being unaware that missing values in the downscaled projections were the
result of missing data in the GCM input fields). This text provides general information
relevant to the application and use of any climate model simulations in impact
assessments.



ORGANIZATION AND APPROACH

The research process of this project consists of three main stages: obtaining and processing
the inputs and code; preparing and conducting the simulations; and analyzing the outputs.
The order of and relationships between the three primary research tasks are summarized
in Figure 1. As errors were discovered with inputs and simulations, these processes were
repeated multiple times. Systematic errors and specific problems that were identified and
corrected or addressed during this process are discussed further in ANALYSIS AND
FINDINGS.

In terms of inputs, creating a database of high-resolution climate projections requires
global climate model simulations and observations at the desired spatial and temporal
scale. Here, we used GCM simulations from CMIP3 and both gridded and station-based
observations from a range of sources (Figure 1, blue boxes). These data are described in
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Figure 1. Schematic of the research tasks and activities conducted

under this project.

Figure 1, purple box). The
historical and future emission
scenarios, GCM inputs,
observations, and
downscaling model are all
described in more detail in
this section, below.

During the course of this
project, it was determined
that pre-processing the GCM
inputs and quality-controlling
the station-based inputs was
essential to generating robust
projections at the regional
scale (Figure 1, red/orange
boxes). As awareness of, and
solutions to, these two steps
are an important result of this
project, the GCM  pre-
processing and observational
quality control process are
described in more detail in
ANALYSIS AND FINDINGS.



Preparation of the code and input files and computational methods and post-processsing of
the resulting files (Figure 1, green boxes), although time intensive, can be described
relatively briefly; these are also summarized in this section, below.

After downscaling, the projections were subjected to a rigorous quality control including
checks for both errors and biases (Figure 1, red/orange boxes). As a result of these checks,
a number of improvements were made to the downscaling code and input preparation. The
error and biases tests and the method improvements are described in more detail in the
section ANALYSIS AND FINDINGS.

This project used SRES emission scenarios Alfi (higher), A2 (mid-high), A1B (mid-low) and B1 (lower).
These scenarios were chosen because they cover a broad range of plausible futures in terms of human
emissions of carbon dioxide and other radiatively-active species and resulting impacts on climate. The
new RCP scenarios were not used yet because global climate model simulations using the RCP
scenarios were not available until 2012. RCP-based projections will be generated and made available
in the future if desired.

Climate model simulations begin with a long, multi-century “control” run where external
forcing conditions including greenhouse gas concentrations, solar radiation, and volcanoes
are fixed at constant levels corresponding to a specific year, generally in the 19t century.
The choice of control year varies from one modeling group to the next, but is typically
between 1850 and 1890. This long run is required for the ocean and atmospheric
components of the model to equilibrate with each other and reach a stable climate. Output
from control runs was not used in this project.

Once climate conditions are stabilized, the output from the control run can be used as input
to a transient historical simulation. During a transient simulation, the external forcings
(including greenhouse gas concentrations, solar radiation, and volcanic eruptions) change
from year to year consistent with observed values for that year. The transient historical
forcings used by the GCM simulations in this project are the Coupled Model
Intercomparison Project’s “20th Century Climate in Coupled Models” or 20C3M total
forcing scenarios (Meehl et al. 2007). These scenarios include forcing from anthropogenic
or human emissions of greenhouse gases, aerosols, and reactive species; changes in solar
output; particulate emissions from volcanic eruptions; changes in tropospheric and
stratospheric ozone; and other influences required to provide a complete picture of the
climate over the last century. As such, these simulations provide the closest approximation
to actual climate forcing from the beginning of the transient experiment to the year 2000.
Where multiple 20C3M simulations were available, the first was used here (“run 1”) unless
complete daily outputs were not available for that simulation, in which case the next
available was used.

In the same way as the control run can provide the starting conditions for multiple
historical transient simulations, the historical transient simulation provides the starting
conditions for multiple future simulations. To ensure the accuracy of the historical total
forcing scenarios, it is customary in the climate modeling community for historical
simulations to end at least 5 years before the actual year in which the simulation is being
conducted. So although the CMIP3 GCM simulations were typically conducted after 2005,



CMIP3 historical total-forcing scenario ends and “future” scenarios begin in 2000. In the
future scenarios, solar and volcanic forcing is fixed, and anthropogenic emissions
correspond to a range of plausible pathways rather than observed values.

The scenarios used here are those described in the Intergovernmental Panel on Climate
Change (IPCC) Special Report on Emissions Scenarios (SRES; Naki¢enovi¢ et al., 2000).
These scenarios describe internally consistent pathways of future societal development
and corresponding emissions. The carbon emissions and global temperature change that
result from the SRES scenarios are shown in Figure 2 (left side).

At the higher end of the range, the SRES higher-emissions or fossil fuel intensive scenario
(A1FI, for fossil-intensive) represents a world with fossil fuel-intensive economic growth
and a global population that peaks mid-century and then declines. New and more efficient
technologies are introduced toward the end of the century. In this scenario, atmospheric
COz concentrations reach 940 parts per million by 2100, more than triple pre-industrial
levels of 280 ppm. At the lower end, the SRES lower-emissions scenario (B1) also
represents a world with high economic growth and a global population that peaks mid-
century and then declines. However, this scenario includes a shift to less fossil fuel-
intensive industries and the introduction of clean and resource-efficient technologies.
Emissions of greenhouse gases peak around mid-century and then decline. Atmospheric
carbon dioxide levels reach 550 parts per million by 2100, about double pre-industrial
levels. Associated temperature changes by end-of-century range from 4 to 9°F based on the
best estimate of climate sensitivity.

For this project, climate projections were based on the A1FI higher (dark red), A2 mid-high
(orange), A1B mid-low (red) and B1 (blue) lower scenarios. Due to the decision of IPCC
Working Group 1 to focus on the A2, A1B and B1 scenarios, only four GCMs had A1FI
scenarios available. For other models, daily outputs were not available for all scenarios.
Table 2, in the next section on Global Climate Model Simulations, summarizes the
combinations of GCM simulations and emission scenarios used in this work.

SRES (2000) RCP (2009) ACTUAL

SRES carbon emissions (GtC)
25 — Alfi A2

0
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Figure 2. There are two families of future scenarios: the 2000 Special Report on Emission Scenarios (SRES, left) and
the 2010 Representative Concentration Pathways (RCP, center). This figure compares 2000 Special Report on
Emission Scenarios (SRES, left), 2009 Representative Concentration Pathways (RCP, center), and observed
historical annual carbon emissions (left) in gigatons of carbon (GtC). At the top end of the range, SRES and RCP
scenarios are very similar. At the bottom end of the range, the RCP 2.6 scenario is much lower as it includes the
option of using policies to reduce carbon dioxide emissions, while SRES scenarios do not.




In 2009, the IPCC released a new set of scenarios, called Representative Concentration
Pathways or RCPs (Moss et al.,, 2010). In contrast to the SRES scenarios, the RCPs are
expressed in terms of carbon dioxide concentrations in the atmosphere, rather than direct
emissions. However, RCP scenarios can be converted “backwards”, into the range of
emissions consistent with a given concentration trajectory, using a carbon cycle model
(Figure 2, center). Four RCP scenarios were developed to span a plausible range of future
carbon dioxide concentrations, from lower to higher. At the higher end of the range,
atmospheric carbon dioxide levels under the RCP 8.5 scenario reaches more than 900 parts
per million by 2100. At the lower end, under RCP 2.6 policy actions to reduce carbon
dioxide emissions below zero before the end of the century (i.e. to the point where humans
are responsible for a net uptake of carbon dioxide from the atmosphere) keeps
atmospheric carbon dioxide levels below 450 parts per million by 2100. Associated
temperature changes by end-of-century range from 2 to 8°F based on the best estimate of
climate sensitivity. The RCP scenarios were not used in this work because, although the
scenarios themselves were released in 2009, global climate model simulations using the
RCP scenarios as input were not available until 2012. The SRES scenarios were used
because those were the ones on which available CMIP3 GCM outputs were based.

The implications of using the SRES scenarios instead of RCP scenarios can be quantified by
comparing the scenarios’ emissions (Figure 2) and carbon dioxide concentrations, or
atmospheric levels (Table 1). There are clear RCP-SRES “pairs”: i.e., scenarios that closely
resemble each other in terms of climate forcing and which would therefore be expected to
result in a similar amount of climate change. These are the higher SRES A1fi and RCP 8.5;
mid-low SRES A1B and RCP 6.0; and lower SRES B1 and RCP 4.5. Since the SRES scenarios
begin in 2000, they can also be evaluated relative to historical emissions over the last
decade. This comparison shows that actual emissions are currently near the top of the
range of both SRES and RCP scenarios (Figure 2b).

Table 1. Comparing SRES emission and RCP concentration scenarios, ranked from high to low in order of carbon
dioxide levels in the atmosphere (in units of parts per million by volume) by 2100.

Scenario name CO2in 2100 What to call these scenarios?

SRES A1lfi 958 Higher emissions or fossil-fuel intensive

RCP 8.5 936

SRES A2 836 Mid-high emissions or continued emissions
growth

SRES Alb 703 Higher mid-range; emissions peak, then begin

RCP 6.0 670 to decline

SRES B2 611 Lower mid-range; emissions peak, then decline

SRES A1T 575

SRES B1 540 Lower emissions; emissions peak mid-century,

RCP 4.5 538 then decline to near 1990 levels by 2100

RCP 2.6 421 Stringent mitigation scenario

Negative emissions before end of century
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This project used CMIP3 global climate model simulations from 16 different models. These include all
but one of the CMIP3 models that had archived the daily maximum and minimum temperature and
precipitation outputs required for downscaling. The new CMIP5 global climate model outputs were
not used because they were not available until 2012 and are still being updated in 2013.

Global climate model simulations, while in a state of constant flux within a given research
group or laboratory, are archived at regular intervals by the World Climate Research
Programme's Working Group on Coupled Modelling (WGCM). In preparation for the IPCC’s
Fourth Assessment Report (AR4), the WGCM requested that the US DOE-funded Program
for Climate Model Intercomparison and Diagnosis (PCMDI) collect model output from
climate modeling centers around the world. This first collection, assembled between 2005
and 2006 and archived by PCMDI, represents models that contributed to phase 3 of the
Coupled Model Intercomparison Project (CMIP3; Meehl et al., 2007). These are the results
presented in the 2007 IPCC Fourth Assessment Report (AR4).

The GCM simulations used in this project consist of all CMIP3 simulations archived by
PCMDI with daily maximum and minimum temperature and precipitation outputs.
Additional simulations were obtained from the archives of the Canadian Centre for Climate
Modeling and Analysis, the Geophysical Fluid Dynamics Laboratory, the National Center for
Atmospheric Research, and the U.K. Meteorological Office. A total of 17 GCMs met this data-
based criteria. The full list of GCMs used, their origin, the scenarios available for each, and
the time periods covered by their output are given in Table 2. Output from 12 GCMs was
available for the full time period (1960 or 1961 to 2099) while output from 5 more GCMs
was available for three time slices (1961-2000, 2046-2065, 2081-2100).

After the original GCM files were obtained from their host archive, they were subjected to a
basic quality control to ensure the files contained the days and the data they stated that
they did, that the data was within reasonable bounds for the variable listed, and that any
missing data were identified. This analysis showed that many original GCM files had errors
or peculiarities that were catalogued by this project before conducting the downscaling.
The results of the quality control process and the errors it detected are summarized in
ANALYSIS AND FINDINGS.

No attempt was made to select a sub-set of GCMs that performed better than others, as
previous literature has showed that it is difficult, if not impossible, to identify such a sub-
set for the continental U.S. (e.g. Knutti, 2010; Randall et al. 2007) However, the bias and
error analysis conducted here offers insights into model performance (see PROJECT
RESULTS), including demonstrating how some models are better able to simulate regional
aspects of temperature and precipitation over the continental U.S. than others and
identifying one model (BCCR-BCM2) with consistently poor performance that was removed
from the archive. BCCR-BCM2 is a relatively new model and does not have a more recent
version included in the CMIP5 phase, as do the remainder of the models used here.

From 2011 through the end of 2012, PCMDI began to collect and archive new GCM
simulations that contributed to the fifth phase of CMIP and which will be used in the
upcoming IPCC Fifth Assessment Report (AR5; Taylor et al. 2012). The CMIP3 and CMIP5
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archives are similar in that most of the same international modeling groups contributed to
both. There are even a few of the same models (e.g. HadCM3) in both CMIP3 and CMIP5.
Both provide daily, monthly, and yearly output from climate model simulations driven by a
wide range of future scenarios. However, the archives are also different from each other in
three key ways. First, many of the CMIP5 models are new versions or updates of previous
CMIP3 models and some of the CMIP5 models are entirely new. Some of the CMIP5 models
are “Earth System Models” that include both traditional components of the CMIP3
Atmosphere-Ocean General Circulation Models as well as new components such as
atmospheric chemistry or dynamic vegetation. Second, the CMIP5 simulations use the RCP
scenarios as input for future simulations while the CMIP3 simulations use the SRES
scenarios as input (Figure 2). Third, the CMIP5 archive contains many more output fields
than the CMIP3 archive did. Future downscaling efforts will apply the same methods
and computational framework to CMIP5 simulations, so these can be used in

conjunction with the CMIP3 simulations developed here, as a “super-ensemble”.

Table 2. Global climate modeling groups and their models, output from which they have contributed to CMIP3
(used in IPCC AR4, 2007) and/or CMIP5 (used in IPCC AR5, 2013). Those marked with (*) archived only time slices:
1961-2000, 2046-2065 and 2081-2100. Those marked with (*) begin in 1961. All other models archived full daily
time series from 1960 to 2099. The BCCR-BCM2 model was eliminated from the archive due to poor performance.

Origin CMIP3 model(s) Scenarios
Bjerknes Centre for Climate Research, Norway BCCR-BCM?2.0 A2, A1B, B1
National Center for Atmospheric Research, USA CCSM3 A1lFl, A2, A1B, B1
PCM AlFI, A2, A1B, B1
Canadian Centre for Climate Modelling and Analysis, CGCM3.1 -T477 A2, A1B, B1
Canada CGCM3.1-T63~ A2, Al1B, B1
Centre National de Recherches Meteorologiques, CNRM-CM3 A2, A1B, B1
France
Commonwealth Scientific and Industrial Research CSIRO-Mk3.0*A A2, A1B, B1
Organisation, Australia
Max Planck Institute for Meteorology, Germany ECHAMS5/MPI A2, A1B, B1
National Institute of Meteorological Research/Korea ECHO-G (with MPI) A2, A1B, B1

Meteorological Administration

NOAA Geophysical Fluid Dynamics Laboratory, USA GFDLCM2.0 A1FIl, A2, A1B, B1
GFDLCM2.1 A2, B1

NASA Goddard Institute for Space Studies, USA GISS-AOM*A A1lB, B1

UK Meteorological Office Hadley Centre HadCM3 A1lFl, A2, A1B, B1

HadGEM1 A2, A1B

Agency for Marine-Earth Science and Technology, MIROC3.2 (hires)*» A1B, B1

Atmosphere and Ocean Research Institute, and MIROC3.2 (medres)*A A2, A1B, B1

National Institute for Environmental Studies, Japan

Meteorological Research Institute, Japan MRI-CGCM2.3.2*A A2, A1B, B1
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This project used the statistical Asynchronous Regional Regression Model (ARRM). It was selected because it is
able to resolve the tails of the distribution of daily temperature and precipitation to a greater extent than the
more commonly used Delta and BCSD methods, but is less time-intensive and therefore able to generate more
outputs as compared to a high-resolution regional climate model.

Dynamical and statistical downscaling represent two complimentary ways to incorporate
higher-resolution information into GCM simulations in order to obtain local to regional-
scale climate projections. Dynamical downscaling, often referred to as regional climate
modeling, uses a limited-area, high-resolution model to simulate physical climate processes
at the regional scale, with grid cells typically ranging from 10 to 50km per side. Statistical
downscaling models capture historical relationships between large-scale weather features
and local climate, and use these to translate future projections down to the scale of any
observations—here, both individual weather stations as well as a regular grid.

Statistical models are generally flexible and less computationally demanding than regional
climate models, able to use a broad range of GCM inputs to simulate future changes in
temperature and precipitation for a continuous period from 1960 to 2100. Hence,
statistical downscaling models are best suited for analyses that require a range of future
projections that reflect the uncertainty in emission scenarios and climate sensitivity, at the
scale of observations that may already be used for planning purposes. If the study is more
of a sensitivity analysis, where using one or two future simulations is not a limitation, or if
it requires multiple surface and upper-air climate variables as input, and has a generous
budget, then regional climate modeling may be more appropriate.

Each commonly used downscaling method has its own benefits, and each can be sufficient
for certain applications. For example, the simple delta or “change factor” approach does a
good job with downscaling annual or seasonal mean temperature (as demonstrated in
Figures 4 and 5). Regional climate models require large amounts of computing power, but
provide consistent high-resolution projections for a broad range of surface and upper-air
variables. None of these existing methods, however, allow for using multiple climate
models and scenarios as input while downscaling to any spatial scale (including both
station-based and gridded), and adequately resolving projected changes in daily climate
extremes, at the same time.

For that reason, in this project we used a relatively new statistical downscaling model, the
Asynchronous Regional Regression Model, or ARRM (Appendix F: Stoner et al, 2012).
ARRM uses asynchronous quantile regression, originally developed by Koenker and Bassett
(1978) to estimate conditional quantiles of the response variable in econometrics.
Dettinger et al. (2004) was the first to apply this statistical technique to climate projections
to examine simulated hydrologic responses to climate variations and change, as well as to
heat-related impacts on health (Hayhoe et al., 2004).

ARRM expands on these original applications with modifications specifically aimed at
improving the ability of the model to simulate the shape of the distribution including the
tails, including use of a piecewise rather than linear regression to accurately capture the
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often non-linear relationship between modeled and observed quantiles, and bias correction
at the tails of the distribution.

ARRM is a flexible and computationally efficient statistical model that can downscale
station-based or gridded daily values of any variable that can be transformed into an
approximately symmetric distribution and for which a large-scale predictor exists. A
quantile regression model is derived for each individual grid cell or weather station that
transforms historical model simulations into a probability distribution that closely
resembles historical observations (Figure 3a). This model can then be used to transform
future model simulations into distributions similar to those observed (Figure 3b). More
information on the ARRM method is provided in Appendix F, “An asynchronous regional
regression model for statistical downscaling of daily climate variables” by Stoner et al.
(2012).

—08BS = 1961-1990
GFDL CM2.1
— Hadcm3

— PCM

== B12070-2099

= A1FI 2070-2099

number of days per year (May-Sept)
number of days per year (May-Sept)

0 10 20 30 40 50 0 10 20 30 40 50 60

daily maximum temperature (°C) daily maximum temperature (°C)
Figure 3. (a) Observed (black) and historical simulated (b) Historical simulated (black) and future projected daily
distribution of daily maximum summer temperatures by maximum summer temperature under the SRES A1FI higher (red)
three GCMs for a weather station in Chicago for and B1 lower (orange) emission scenarios.

evaluation period 1980-1999.

Both statistical and dynamical downscaling models are based on a number of assumptions,
some shared, some unique to each method. Two important shared assumptions are the
following: first, that the inputs received from GCMs are reasonable, i.e. that they adequately
capture the large-scale circulation of the atmosphere and ocean at the skillful scale of the
global model; and second, that the information from the GCM fully incorporates the climate
change signal over that region.

All statistical models are based on a crucial assumption often referred to as stationarity.
Stationarity assumes that the relationship between large-scale weather systems and local
climate will remain constant over time. This assumption may be valid for lesser amounts of
change, but could lead to biases under larger amounts of climate change (Vrac et al., 2007).

In a separate USGS-funded TTU-GFDL project, we are currently evaluating the stationarity
of three downscaling methods, including the ARRM method (used here), the delta approach,
which adds a “delta” derived from GCM output to observed mean annual, seasonal, or
monthly values in order to get future values (e.g., Hay et al., 2000; as used in USGCRP,
2000); and the Bias Correction-Statistical Downscaling (BCSD) model, which uses a
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quantile mapping approach to downscale monthly AOGCM-based temperature and
precipitation to a regular grid (Wood et al. 2004; as used in Hayhoe et al. 2004, 2008 and
USGCRP, 2009; available from ClimateWizard.org and the DOE Green Data Portal). In this
ongoing project, high-resolution 25km global model simulations for end-of-century under
the higher RCP 8.5 scenario have been coarsened and used as input to these three
statistical downscaling methods. The resulting projections are then compared directly to
the high-resolution output to determine the extent to which the assumption of stationarity
holds true. Where biases are small, stationarity is a reasonable assumption. Where biases
are large, the assumption of stationarity fails.
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Figure 4. Bias in the 0.1% (top), 50" (middle) and 99.9" (bottom) quantiles of daily maximum temperature as
simulated by the ARRM, Delta, and BCSD/Quantile Mapping methods compared to high-resolution 25km global
GFDL dynamical model simulations for end of century under the higher RCP 8.5 emissions scenario. Blue colors
indicate a cold bias, while warm colors indicate a warm bias. Hayhoe et al. (2012)

To examine the stationarity in daily maximum temperatures, Figure 4 compares biases
from the 0.1th to the 99.9th quantile (i.e. from the coldest day in 1000 to the hottest day in
1000). These biases represent the difference between daily maximum temperature values
simulated by the 25km global climate model vs. those simulated by each statistical model,
using coarsened global climate model fields as input.
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Preliminary analyses show that the assumption of stationarity holds true over much of the
continental U.S. for the middle of the distribution (the 50t quantile, or median maximum
temperature). The delta and BCSD methods exhibit a strong cold bias of up to 10°C at
higher latitudes for cold temperatures. The BCSD method also begins to exhibit a
systematic warm bias across the central U.S. at high temperatures. The only location where
ARRM performance is systematically non-stationary is at high temperatures (at and above
the 99.9th quantile) along the coast, with warm biases up to 6°C. This may be due to the
statistical model’s inability to capture dynamical changes in the strength of the land-sea
breeze as the temperature differences between land and ocean are exacerbated under
climate change; the origins of this feature are currently under investigation.

For minimum temperatures, Figure 5 compares biases from the 0.1th to the 99.9t quantile
(i.e. from the coldest night in 1000 to the hottest night in 1000). Again, these biases
represent the difference between nighttime minimum temperatures simulated by the
25km global climate model vs. those simulated by each statistical model from coarsened
global climate model output. Here, the cold bias in monthly Delta and BCSD/Quantile
Mapping methods is more widespread but less spatially consistent. For high minimum
temperatures (warm nights), the ARRM method has a larger bias across much of the U.S.
between 2 to 6°C, suggesting that it may over-estimate the increase in warm night
temperatures in the future.
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Figure 5. Same as Figure 3, but for minimum daily temperature. Hayhoe et al. (2012)
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For precipitation, Figure 6 compares biases from the 10th to the 99.9t% quantile, including
both wet and dry days. Green colors are used to indicate where the statistical models over-
estimate precipitation relative to the global model, while brown colors show where they
under-estimate future precipitation.

Here, the BCSD approach, originally designed for forecasting streamflow that typically
depends on accumulated precipitation over timescales of weeks (i.e. not high quantile
events), shows a remarkable near-zero bias up to the 90t quantile. After that point,
however, it rapidly develops a systematic positive bias in precipitation covering the entire
continental U.S. but greatest in the Southeast region, increasing to 100% for the 99.9th
quantile. (Recall that this is the bias in the entire distribution including dry days; hence, a
bias in the 99t quantile is the bias in the 1-out-of-100 wettest day including both wet and
dry days.) The Delta method exhibits a systematic positive (wet) bias for low precipitation
that shifts to a systematic negative (dry) bias for high precipitation. The ARRM method is
characterized by a spatially variable bias at all quantiles that is generally not systematic, and
varies from approximately -30 to +30% depending on location. The magnitude of the bias
increases for higher quantiles and appears to intensify somewhat around the Gulf Coast
region by the 99.9th quantile, suggesting once more that the assumption of stationarity may
not be able to capture the effects of land/ocean changes on coastal climate.

Although the downscaling model is purposely designed to be applicable to any variable
with a relatively symmetric distribution, predictors must be pre-selected for each variable
and there are some differences in the initial processing of each predictor that can improve
the performance of the model in downscaling. The ARRM method has been specifically
designed to allow for user-selected predictors. For the sake of consistency, however, in this
project predictors were chosen to be the same variables as the predictands: 2Zm maximum
and minimum temperature and 24h cumulative precipitation. These are the most
frequently-archived daily output from both CMIP3 and CMIP5 AOGCMs; furthermore,
comparison with upper-air predictors for the stations in this study showed no consistent
continent-wide improvement that would affect the performance of the downscaling model.
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DAILY TOTAL PRECIPITATION BIAS
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Figure 6. Bias in the 10th (first row), 50" (second row), 90" (third row), 99" (fourth row) and 99.9" (last row)
quantiles of daily precipitation (including wet and dry days) as simulated by the ARRM, Delta, and BCSD/Quantile
Mapping methods compared to high-resolution 25km global GFDL dynamical model simulations for end of century
under the higher RCP 8.5 emissions scenario. Green colors indicate a wet bias, while brown colors indicate a dry
bias. Hayhoe et al. (2012)
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Gridded Observations

This project used the gridded meteorological data prepared by Maurer et al. (2002) at one-eighth degree over
the continental U.S. and one-half degree over Alaska. At the time of the project, this was the longest, best
quality, and highest-resolution dataset of gridded daily temperature and precipitation available. This original
dataset has now been updated to a one-sixteenth grid; future work will use the updated dataset.

Daily maximum and minimum temperature and 24h cumulative precipitation from 1960 to
1999 for a regular grid covering the continental U.S., southern Canada and northern Mexico
was used to train the statistical downscaling model, ARRM, for gridded downscaling. Over
the continental U.S., the resolution of the grid is one-eighth degree, which can range from
approximately 10 to 15km, depending on latitude. Over Alaska, the resolution of the grid is
one-half degree. The resolution of the datasets are illustrated by the climatological 1960-
1999 mean temperature and precipitation for the continental U.S. region and for Alaska,
shown in Figure 7.

1200 15W 110w 105W 100 95l 90w &l

20 40 60 80 100 120 140 160 180 200 250 300

Figure 7. Climatological 1960-1999 average temperature in degrees C (left) and annual cumulative precipitation in
centimeters (right) from the retrospective VIC dataset for the continental U.S., southern Canada and northern
Mexico at a resolution of one eighth degree (top) and Alaska at a resolution of one half degree (bottom) (data
from Maurer et al. 2002).

This data was obtained from the long-term hydrological dataset originally developed by
and described Maurer et al. (2002) for long-term stream forecasting. As the authors note
(see http://www.engr.scu.edu/~emaurer/gridded_obs/index_gridded_obs.html), this
dataset has been checked to ensure the values are able to reproduce observed monthly
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total precipitation and average temperature for randomly-selected grid cells only. For that
reason, this gridded dataset was subjected to the same error tests and quality control
process as the downscaled projections; the results of these tests, presented in Appendix C,
suggest that this dataset generally free of obvious errors and thus provides a reliable basis
for training the statistical model.

This original dataset has now (2013) been revised to cover the period 1915 to 2011 and
the resolution increased to one-sixteenth degrees over the continental U.S. (Livneh et al.
2013; available at
ftp://ftp.hydro.washington.edu/pub/blivneh/CONUS/nc.1915.2011.bz2/). Future
downscaling using CMIP5 models will be based on the updated dataset, using the period
1950-2011 to train the statistical model and generate output fields at 1/16t% degree
resolution.

This project used long-term station data from the Global Historical Climatology Network, supplemented with
additional station data from MIDAS and NCDC. All station data was quality-controlled to remove questionable
data points before being used to train the statistical downscaling model.

In addition to the gridded dataset, point-location weather station data was also obtained
and used to train the downscaling model in order to generate a separate, independent
point-based dataset of climate projections corresponding to specific weather stations.
These projections are particularly useful for locations with high spatial variability
where a one-eighth degree grid may provide too much smoothing of local climate
conditions, and/or for applications (such as streamflow or crop models) where
impact models have already been calibrated to weather observations from specific
weather stations. For these applications, the station-based climate projections can be
extracted and applied without requiring significant modification of the original
experimental methodology.

Records were obtained from the Global Historical Climatology Network (GHCN;
http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/) and supplemented with additional
records from the U.K. Met Office Integrated Data Archive System Land and Marine Surface
Stations Data (MIDAS, http://badc.nerc.ac.uk/data/ukmo-midas/) and the National
Climatic Data Center cooperative observer program (NCDC-COOP,
http://www.ncdc.noaa.gov/land-based-station-data/cooperative-observer-network-coop).
Additional station data used in previous projects (e.g. from the Arizona Mesonet and the
Florida Climate Center) were also incorporated into the quality control and downscaling
process to maximize the number of available data records, if records for their latitude and
longitude locations were not already present in GHCN or MIDAS.

MIDAS was not available in daily format; thus, three-hour instantaneous temperature data
was extracted and fit to a diurnal function and cumulative precipitation was extracted and
summed before being evaluated relative to WMO standards (e.g. maximum daily
temperature must occur between 6am and 6pm; minimum nighttime temperature between
6pm and 6am; precipitation is summed from Oh to 21h local time).
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Figure 8. Maximum temperature (top), minimum temperature (middle)
and precipitation (bottom) weather stations for Alaska (blue box), the
continental U.S. (red box) and the Caribbean region (green box).
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For downscaling, the weather
stations were grouped into
three geographic areas as
shown in Figure 8: Alaska (blue
box), continental U.S., southern
Canada and northern Mexico
(red box) and U.S. Caribbean
territories (green box).
Stations outside these regions
(specifically, locations in north
central and eastern Canada and
southern Mexico) were not
downscaled.

To train the downscaling
model, the observed record
must be of adequate length and
quality. To appropriately
sample from the range of
natural climate variability at
most of the station locations,
and to produce robust results
without over-fitting, stations
were required to have a
minimum of 20 consecutive
years of daily observations
overlapping GCM outputs with
less than 50% missing data
after quality control. When
these limits were applied, the
number of usable stations was
reduced from 10,986 to 8,212
for maximum temperature,
from 10,920 to 8,176 for
minimum temperature, and
from 13,233 to 10,272 for
precipitation. The latitude,
longitude, and station names of
the weather stations for which
downscaled projections were
generated are provided in
Appendix A.

All datasets were incorporated
into the quality control
framework described in
ANALYSIS AND FINDINGS.



Long-term records from these datasets were then downscaled and incorporated into the
database of high-resolution projections described in PROJECT RESULTS, expanding the
original geographic scope and resolution of the grid-based downscaling.

Data file formats and computational approaches used represent the standard for climate
model data and analysis. Datasets are archived as ascii text files (observed station data)
and self-describing netCDF files (gridded observations and both station-based and gridded
climate projections). All codes were written using the statistical programming language R
(http://cran.us.r-project.org/). Figures were prepared using the Grid Analysis and Display
System (http://www.iges.org/grads/) and the NCAR Command Language
(http://www.ncl.ucar.edu/) and stored in postscript or Adobe PDF format.

PROJECT RESULTS

This project produced four quantitative datasets, as follows:

A quality-controlled, standardized database of long-term observed daily
maximum and minimum temperature and 24h cumulative precipitation for over
8,000 individual long-term weather station locations across North America.

This dataset was generated from original station data, covering the period of record for
each station. Potentially erroneous data points were removed during the quality control
process described in ANALYSIS AND FINDINGS. The resulting data was stored in
individual comma-separated ASCII files containing four columns: year, month, day, and
value. Individual files were created for each location and variable, with the files named by
the station ID. A master list was also created for each variable, containing the latitude,
longitude and ID for each station. This list was used to eliminate duplicate records across
multiple databases.

Stations with sufficient data availability for downscaling that passed the quality control
process are listed in Appendix A.

This dataset is not being provided electronically at this time. Although it is a derivative of
existing datasets, it contains enough non-original data that additional permissions (from
GHCN, NCDC, MIDAS, and other sources) will be required before it can be archived and made
available to users. Our permission is limited to individual use.

A database of daily maximum and minimum temperature and 24h cumulative
precipitation projections for a regular one-eighth degree grid covering the land area
of the continental U.S., southern Canada, and northern Mexico and a one-half degree
grid covering Alaska.

This dataset was generated by downscaling global climate model outputs to land-based
observations at the resolution of one-eighth degree for the continental U.S., southern
Canada and northern Mexico (222 latitude bands and 462 longitude bands for a total of
102,562 individual gridcells per file, approximately 25% of which are ocean) and one-half
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degree for Alaska (46 latitude bands by 98 longitude bands for a total of 4,508 grid cells per
file, approximately 30% of which are ocean).

Daily historical simulations and future projections were generated for 16 global climate
models and 4 future SRES scenarios for the period 1960 to 2099 for a total of 51,100 days
per file. The resulting data was archived in self-describing netCDF files, one for each
variable and climate model/scenario combination. NetCDF format was selected for three
reasons. First, this format allows individual locations and regions to be easily extracted
using NCO or CDO command-line utilities. Second, this format provides a relatively efficient
way of storing time-dependent spatial data. Lastly, this format is easily accessible by many
commonly-used programs, including ArcGIS and R.

As the files are approximately 42 GB each, these are provided in electronic format only.

The format of the files is as follows (sample file header for the continental U.S.):
netcdf hadcm3.alfi.tmax.NAm.grid.1960.2099 {

dimensions:
lon = UNLIMITED ; // (462 currently)
lat = 222 ;
time = 51100 ;
variables:
double lon(lon) ;
lon:units = "degrees_east" ;
lon:long _name = "lon" ;
double lat(lat) ;
lat:units = "degrees_north" ;
lat:long _name = "lat" ;
int time(time) ;
time:units = "days since 1959-12-31" ;
time:long name = "time" ;
double tmax(lon, lat, time) ;
tmax:units = "degreesC" ;
tmax:missing_value = 1l.e+30 ;
tmax:long name = "Downscaled Maximum Temperature in Degrees Celsius" ;

A database of daily maximum and minimum temperature and 24h
cumulative precipitation projections for 8,212 (maximum temperature), 8,176
(minimum temperature) and 10,852 (precipitation) individual long-term weather
stations in the continental U.S., southern Canada, Alaska, northern Mexico and the
Caribbean.

This dataset consists of projections for individual locations, identified by latitude,
longitude, and station ID. Although the original input observations are archived in ASCII
format, the resulting projections are archived in self-describing netCDF files, one for each
variable and climate model/scenario combination. The list of available locations is
contained within each self-describing netCDF file and is also provided as an Excel file in
Appendix A.
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Daily historical simulations and future projections were generated for 16 global climate
models and 4 future SRES scenarios for the period 1960 to 2099 for a total of 51,100 days
per file. The relevant variables in the file are the downscaled projections, contained in
tmax/tmin/pr (dimensioned as the number of days by number of stations), and the station
information, contained in station_id, latitude, and longitude (dimensioned by the number of
stations).

As the files are approximately 1.7 GB each, these are provided in electronic format only.

The format of the files is as follows (sample file header):

netcdf pcm.alfi.tmax.NAm.stations.1960.2099 {
dimensions:
stn_number = 8212 ;

time = UNLIMITED ; // (51100 currently)
ncar = 11 ;
ids = 8212 ;

variables:

int stn_number(stn_number) ;
stn_number:units = ""

float longitude(stn_number) ;
longitude:units = "degrees_east" ;
longitude:missing value = 1l.e+30f ;

float latitude(stn_number) ;
latitude:units = "degrees_north" ;
latitude:missing value = 1l.e+30f ;

double time(time) ;
time:units = "days" ;

float tmax(time, stn_number) ;
tmax:units = "see_ header" ;
tmax:missing _value = 1l.e+30f ;

int ncar(ncar) ;
ncar:units = "" ;

int ids(ids) ;
ids:units = "" ;

char station_id(ids, ncar) ;

nn

station_id:units =

Projected changes in seasonal and annual temperature and precipitation and
other impact-relevant indicators, per degree global mean temperature change
(averaged across scenarios) and for three future time periods compared to a
historical time period (for individual scenarios).

One hundred and fourteen seasonal and annual climate indicators were calculated from the
gridded downscaled daily maximum and minimum temperature and 24h cumulative
precipitation products for the continental U.S., southern Canada and northern Mexico. The
indicators include seasonal and annual average temperature and precipitation, as well as
secondary indicators such as quantiles, number of days per year above or below a given
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threshold, and hybrid indicators such as hot/dry and cool/wet days. The indicators and
their units are listed in Table 3.

The original indicators are archived in netCDF format, as follows (sample header):

netcdf hadcm3.a2.indicators {

dimensions:

lon = 460 ;

lat = 222 ;

time = UNLIMITED ; // (140 currently)

variables:

double lon(lon) ;
lon:standard_name = "longitude" ;
lon:long name = "longitude" ;
lon:units = "degrees_east" ;
lon:axis = "X" ;

double lat(lat) ;
lat:standard name = "latitude" ;
lat:long _name = "latitude" ;
lat:units = "degrees_north" ;
lat:axis = "Y" ;

double time(time) ;
time:standard_name = "time" ;
time:units = "year as %Y.%f" ;
time:calendar = "proleptic gregorian" ;

float indicator.l(time, lat, lon) ;
indicator.l:units = "annual value" ;

indicator.l:_FillValue = 1l.e+30f ;
float indicator.2(time, lat, lon) ;
indicator.2:units = "annual value" ;
indicator.2: FillValue = 1l.e+30f ;
float indicator.3(time, lat, lon) ;
indicator.3:units = "annual value" ;
indicator.3:_FillValue = 1l.e+30f ;

float indicator.114(time, lat, lon) ;
indicator.ll4:units = "annual value" ;
indicator.114: Fillvalue = 1l.e+30f ;

The variables are numbered according to the indicator numbers assigned in Table 3.

Indicator files contain one value for each of 140 years, and one value per grid cell for each
of 22 latitude and 460 longitude bands. There are 460 bands instead of 462 because
precipitation was downscaled using a 3x3 grid to minimize pixilation during heavy storms
(see ANALYSIS AND FINDINGS for more information). There is one file for each global
climate model/scenario combination. Models with only time slices available (see Table 2)
were not included in these calculations as insufficient data was available to calculate the
temporal averages.

As these files are approximately 6.5GB each, they are provided in electronic format only.

In addition to providing annual values, projected changes were also averaged for graphical
analysis. The absolute values were calculated for the historical period 1960-1979 while
simulated changes or anomalies were calculated for one historical and three future
climatological 20-year time periods: 1990-2009, 2020-2039, 2050-2069, and 2080-2099.
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These averages are provided in netCDF format, one file for each indicator and scenario, as
follows:

netcdf a2.ts.indicator95 {

dimensions:

lon = 460 ;

lat = 222 ;

time = UNLIMITED ; // (5 currently)

variables:

double lon(lon) ;
lon:units = "degrees_east" ;

double lat(lat) ;
lat:units = "degrees_north" ;

double time(time) ;
time:units = "years" ;

float mod0O(time, lat, lon) ;
modO:units = "annual value" ;
mod0:missing value = 1l.e+30f ;

float modl(time, lat, lon) ;
modl:units = "annual value" ;
modl:missing value = 1l.e+30f ;

float mod2(time, lat, lon) ;
mod2:units = "annual value" ;
mod2:missing value = 1l.e+30f ;

float modl7(time, lat, lon) ;
modl7:units = "annual value" ;
modl7:missing value = 1l.e+30f ;

where “mod0” refers to the all-model average and the remaining models are listed in
alphabetical order as they appear in Table 2. The files are named according to the indicator
numbers assigned in Table 3.

The majority of the indicator files contain values for BCC-BCM2 (mod1 out of mod17);
however, it is not recommended that these be used, as the BCC-BCM2 model showed
consistently large biases in simulating historical temperature and precipitation and was
ultimately excluded from the dataset on this basis (see ANALYSIS AND FINDINGS for more
information).

The results of the temporal averaging are summarized in a series of regional temperature-
precipitation scatter plots (Appendix B; original Excel files also provided). These plots
show the spatially-averaged projected change in temperature and precipitation for the
three future time periods (2020-2039, 2050-2069 and 2080-2099), compared to the
historical 1960-1979 period, for 8 U.S. regions: Pacific Northwest, Southwest, Northern
Great Plains, Southern Great Plains, Midwest, U.S. Northeast and Canadian Maritimes, Mid-
Atlantic, and Southeast. In addition to the scatter plots for temperature and precipitation,
each Excel file also contains a map defining the geographic boundaries of each region, and a
scatter plot of the projected change in the number of hot/dry and cool/wet days per year.
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Table 3. Primary and secondary climate indicators calculated for 5 twenty-year time slices (1960-1979, 1990-2009,
2020-2039, 2050-2069, and 2080-2099) and 4 twenty-year global mean temperature targets (+0,1,2,3°C relative to
1971-2000) and their units. Indicator numbers refer to the title of the netCDF files.

Indicator Units

ANNUAL AND SEASONAL AVERAGES

1-5. Average maximum temperature (winter or DJF; spring or MAM; summer or
JJA; fall or SON; annual)

degrees C

6-10. Same, for average minimum temperature

“

11-15. Same, for cumulative precipitation

mm per season or year

ANNUAL AND SEASONAL EXTREMES

16. Hot summers: Average maximum temperature exceeding hottest historical
(1971-2000) summer

Number of years historical
threshold exceeded (maximum
20)

17. Cold years: Average minimum temperature below coldest historical (1971-
2000) year

18-19. Wet/dry years: Cumulative precipitation above/below historical (1971-
2000) wettest/driest year

ANNUAL AND SEASONAL VARIANCE

20-24. Standard deviation of daily maximum temperature (winter or DJF; spring | degrees C
or MAM; summer or JJA; fall or SON; annual)

25-29. Same, for daily minimum temperature “

30-34. Same, for cumulative precipitation, wet days only log(mm)
35-39. Range in daily maximum temperature (winter or DJF; spring or MAM; degrees C
summer or JJA; fall or SON; annual)

40-44. Same, for daily minimum temperature “

45-49. Precipitation intensity, defined as cumulative precipitation divided by mm/day
number of wet days (winter or DJF; spring or MAM; summer or JJA; fall or SON;

annual)

ANNUAL EXTREMES

50-53. Temperature of 1, 3, 5, and 10-day hottest period (based on daily degrees C
maximum temperature)

54-57. Same, for coldest period (based on daily minimum temperature) “

58-61. Same, for cumulative precipitation mm

62-66. Total number of dry days defined as pr<0.01” (winter or DJF; spring or
MAM; summer or JJA; fall or SON; annual)

Average number of days per
year

67-71. Longest stretch or period of dry days, defined as pr<0.01” per day
(winter or DJF; spring or MAM; summer or JJA; fall or SON; annual)

Total number of days per year

72-76. Average length of dry periods, defined as pr<0.01” per day (winter or
DJF; spring or MAM; summer or JJA; fall or SON; annual)

77-79. Beginning, end, and length of growing season (defined as the period
between the last frost in spring and the first frost in autumn)

Julian day (for beginning and
end of season) and number of
days (for length of season)

THRESHOLDS

80-84. Days per year above 32, 65, 80, 90, and 100°F, based on daily maximum
temperature

Average number of days per
year

85-86. Days per year below 20, 32°F, based on daily (nighttime) minimum
temperature

87-89. Nights per year above 65, 75, 85°F, based on daily (nighttime) minimum
temperature

90. Wet days (pr>0.01")

91-93. Heavy precipitation days (pr>1, 2, 3 inches)
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94-95. Cumulative growing degree-days, based on average temperature
((max+min)/2), using a threshold of 65, 75°F

Degree-Days

QUANTILES

96-100. Number of hot days per year with daily maximum temperature above
the historical (1971-2000) 50, 75, 90, 99 and 99.9" quantile

Average number of days per
year

101-105. Number of cold nights per year with daily minimum temperature
below the historical (1971-2000) 0.1, 1, 10, 25, and 50th quantile

“

106-110. Number of wet days with precipitation exceeding the historical (1971-
2000) 50, 75, 90, 99 and 99.9" quantiles

HYBRIDS

111. Number of snow days per year (defined as daily maximum temperature
equal to or below freezing and precipitation above 0.01")

Average number of days per
year

112. Ratio of precipitation falling as rain to that falling as snow (defined as daily
maximum temperature equal to or below freezing)

Ratio (rain/snow), mm/mm

113. Number of hot, dry days per year (defined as precipitation < 0.01” and
daily maximum temperature > 90°F)

Average number of days per
year

114. Number of cool, wet days per year (defined as precipitation > 0.01” and
daily maximum temperature < 65°F)

“

Using the approach introduced by the 2011 National Research Council Report, Climate
Stabilization Targets: Emissions, Concentrations, and Impacts over Decades to Millennia
(NAS, 2011), future projections were also averaged across scenarios by calculating the
changes expected for global mean temperature changes of +1°C, +2°C and +3°C compared
to historical 1971-2000 for each individual simulation. This approach has the advantage of
being able to compare projected changes across a range of scenarios and climate model
sensitivities to resolve the differences in the magnitude and pattern of expected change
that is independent of the uncertainty in either human scenarios or climate sensitivity. This
approach also presents impacts within a policy-relevant framework, as national and
international agreements (such as the EU target of +2°C) can be couched in terms of global
mean temperature targets rather than in terms of a given emissions scenario.

Calculating projected changes under a series of global mean temperature targets was
accomplished as follows. First, annual average global average temperature was calculated
for each model for each year from 1960 to 2099. Then, the 20-year running mean values
were calculated for each year beginning with 1960-1979 and ending with 2080-2099. Next,
the first period in which the 20-year global mean temperature was equal to or higher than
+1/2/3°C compared to the 1971-2000 global mean temperature of that simulation was
identified (see Table 4). Finally, this date was used to select the 20-year period from the

corresponding simulation to average for each indicator.

As for the time averages, these global mean temperature values are provided in netCDF
format, one file for each indicator, with each indicator having a “time” dimension of 4,
corresponding to +0 (absolute value) and +1, 2, and 3°C (anomaly relative to simulated
1971-2000). The files are named according to the indicator numbers assigned in Table 3.
Again, models with only time slices available (see Table 2) were not included in these
calculations as insufficient data was available. The results are also presented in graphical
format in Appendix C and copies of the original postscript plots are provided

electronically.
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Table 4. First year in which the twenty-year climatological average global mean temperature for each global
climate model/scenario simulation beginning with that year is equal to or more than +1, 2, and 3°C above the
1971-2000 average for that simulation. Earlier years indicate a more sensitive climate model, later years a less
sensitive one. For the lower emissions scenarios (e.g. A1B, B1) some models do not reach +2 or +3°C before end-
of-century. These are indicated by an “NA” value.

+1o0C +20C +30C +1o0C +20C +30C
SRES A1FI SRES A1B
ccsm 2009 2036 2054 bcm?2 2031 2056 NA
gfdl_2.1 2014 2040 2061 ccsm 2010 2043 NA
hadcm3 2023 2044 2060 cgecm3_t47 2018 2057 NA
pcm 2023 2052 2077 cgcm3_t63 2010 2042 2075
SRES A2 cnrm 2020 2052 NA
bcm?2 2030 2059 2080 echam5 2026 2051 2073
ccsm 2009 2043 2068 echo 2025 2053 NA
cgcm3_t47 2020 2052 2075 gfdl_2.1 2022 2054 NA
cgcm3_t63 2008 2040 2062 hadcm3 2022 2052 NA
cnrm 2027 2051 2070 hadgem 2017 2045 2070
echam5 2030 2054 2072 miroc_med 2016 2046 2074
echo 2027 2054 2078 pcm 2028 NA NA
gfdl_2.0 2021 2051 2073 SRES B1
gfdl_2.1 2025 2057 2080 bcm?2 2039 NA NA
hadcm3 2026 2051 2074 ccsm 2014 NA NA
hadgem 2018 2045 2066 cgecm3_t47 2027 NA NA
miroc_med 2015 2050 2068 cgecm3_t63 2011 2061 NA
pcm 2033 2068 NA cnrm 2029 NA NA
echam5 2035 2069 NA
echo 2033 NA NA
gfdl_2.0 2021 2079 NA
gfdl_2.1 2026 NA NA
hadcm3 2036 NA NA
miroc_med 2022 2068 NA
pcm 1995 NA NA
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ANALYSIS AND FINDINGS

The previous section described the specific products generated by this project. This section
focuses on the lessons learned while creating and analyzing these products, many of which
are generally applicable to any generation of high-resolution climate projections for impact
assessments. This section also discusses the innovative approaches taken that expanded
the original project scope in order to address questions and concerns that arose during the
course of the research.

The lessons learned and solutions achieved accomplished can be broadly categorized under
five topics:

1. Global climate model and observational inputs: quality control and preparation to
improve quality of downscaled output
2. Downscaling method: modifications to improve quality of output
3. High-resolution climate projections: comprehensive error and bias tests to quantify
quality of output
4. Computation: technical improvements to methods and code to increase efficiency
5. Education: two-way education of the users--and the downscalers—on the
application of this dataset to impact analyses
Each of these issues and the solutions that were identified and implemented are discussed
in detail below.

Global climate model outputs used as predictors for downscaling were carefully reviewed and quality-controlled
to identify errors and peculiarities in the output fields that would need to be documented, corrected, and/or
standardized before use in downscaling.

The majority of global climate model fields used in this analysis were obtained from the
CMIP3 archive, which maintains standards of data provision and quality control. (SRES
A1FI scenarios were not archived by CMIP3: these simulations were obtained directly from
individual modeling groups.) In the past, it has been taken for granted that, because of the
standards required for modeling output to be submitted to CMIP3, these fields can be used
with confidence. This analysis, however, has shown that such an assumption is not valid.

Before the global model fields could be used, they had to be carefully quality-controlled for
a number of specific problems that were identified by trial and error. Specific problems
identified in the course of this analysis consisted of:

1. Missing data (which could range from a few random days to entire decades in the
middle of a simulation)

2. Incorrect values (unrealistic data points far above or below historical observed
maxima or minima)

3. Mis-labeled files (files that did not contain the variable or data listed in the file name
and header)

This last issue was particularly insidious and difficult to identify, requiring communication
with the original modeling group in order to confirm the existence of incorrectly-labeled
files.
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In addition to these errors, each model also had its own peculiarities that had to be
standardized before the predictors could be incorporated into the downscaling model. For
example, most models have 365 days per year with no leap year. A few models did have a
leap year, while other models only have 360 days per year. All models had to be
standardized to 365 days per year, in some cases by removing the leap year days and in
others, by inserting “NA” values for the 315t of each month from August to December. Most
models archived data running from south to north and east to west; however, some model
outputs ran from north to south. Some models archived precipitation in m/s, others in
kg/m2/s. Five models only had limited future time slices available, others began in 1961
instead of 1960.

These and other known quality issues and model peculiarities are listed in Table 5.

Table 5. Known quality control problems with original global climate model outputs and model peculiarities that
had to be documented and, if possible, standardized before the model could be used in downscaling.

\ Global climate model  Known issues \
BCM?2 Alfi scenario not available.

Leap years removed before downscaling.

Erroneous data points in file above maximum observed values.
Model performance significantly poorer than others; removed from
final data provision.

CCSM3 Temperature data for historic and future periods not initialized
from the same run, creating disconnect between the two files if one
were to plot a continuous time series joining the 2 files. This
situation is unavoidable for CCSM, as most of its historical
simulations have erroneous tmax/tmin values (they were
accidentally overwritten with the variable TREFHT by the original
modeling group).

A1fi Tx/Tn: b30.030h to b30.099a (no match)
A1fi Pr: b30.030a to b30.099a (matched)

A1B Tx/Tn: b30.030h to b30.042g (no match)
A1B Pr: b30.040a to b30.030a (matched)

A2 Tx/Tn: b30.030h to b30.042e (no match)
A2 Pr: b30.030e to b30.042e (matched)

CGCM3-T47 Alfi scenario not available.
Simulation begins in 1961. 1960 is missing.
CGCM3-T63 Alfi scenario not available.
Simulation begins in 1961. 1960 is missing.
CNRM Alfi scenario not available.
Leap years removed before downscaling.
CSIRO Alfi scenario not available.
Future data not available for 2000-2045 and 2066-2080.
ECHAMS Alfi scenario not available.

Leap years removed before downscaling.
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ECHO Alfi scenario not available.
Model has 360 days per year. These were divided up such that the
last days of May, July, Aug, Oct and Dec are always missing.

GISS-AOM Alfi and A2 scenarios not available.
Future data not available for 2000-2045 and 2066-2080.
GFDLCM2.0 Alfi and A1B scenarios not available.
GFDLCM2.1 No known issues.
HadCM3 Model has 360 days per year. These were divided up such that the

last days of May, July, Aug, Oct and Dec are always missing.

For the A1B simulation, the last 30 days are missing (Dec 2099) and
10 years between 2080-2089 are missing for precipitation.

For A2 and B1, the last 60 days of the historical period (Nov-Dec
1999) are missing and the first 10 days of Nov 2000 are missing.
For B1, the year 2000 is missing.

HadGEM Model has 360 days per year. These were divided up such that the
last days of May, July, Aug, Oct and Dec are always missing.
Alfiand B1 scenarios not available.

Miroc-med A1lfi scenarios not available.
Future data not available for 2000-2045 and 2066-2080.
Leap years removed before downscaling.

Miroc-hi Alfi and A2 scenarios not available.
Future data not available for 2000-2045 and 2066-2080.
Leap years removed before downscaling.

MRI_CGCM2 Alfi scenario not available.
Future data not available for 2000-2045 and 2066-2080.
PCM PCM A2, A1B and B1 scenarios are based on B06.08 to 1980 and

B07.08 from 1980 to 2099 but daily data for B06.08 is not available
before 1980 so B06.57 was used instead.

There will be a level shift at 1980 because of this.

The last 61 days of 2099 (Nov-Dec) are also missing in the A1B
scenario.

A new pre-processing approach was developed to remove spurious noise in global climate model daily
temperature fields. This approach can be used by any downscaling method in the future. Its application
significantly improved biases in downscaled temperature, particularly for cold and hot extremes.

It is well-known in the climate community that ensemble mean GCM projections typically
out-perform any individual model simulation (Knutti et al.,, 2010). One of the reasons this
may be the case is because the ensemble mean represents the smoothed average of
multiple global climate model fields, and others have recommended smoothing GCM output
before using it to assess regional climate change (e.g., Raisanen and Ylhaisi, 2011). For this
reason, as part of this project we developed and tested a new pre-processing approach for
daily GCM temperature fields to determine whether removal of low-level and potentially
spurious noise from global climate model outputs would improve the quality of the
resulting high-resolution projections.
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We first developed a flexible code where the variance of GCM temperature fields can be
deconstructed using Empirical Orthogonal Function (EOF) analysis for each of the synoptic-
scale regional boxes shown in Figure 8 (Alaska, continental U.S., Caribbean). Synoptic scale
is defined by NOAA as “the spatial scale of the migratory high and low pressure systems of
the lower troposphere, with wavelengths of 1000 to 2500 km”. The primary function of the
GCMs, as used in this analysis, is to simulate the effects of climate change on these large-
scale weather patterns; hence the need to analyze model variance at the skillful scale of the
output fields.

Part of the simulated variance was removed before reconstructing the original temperature
fields for each of these large or synoptic-scale regions from a smaller sub-set of principal
components than were derived from the original data. These reconstructed temperature
fields were then used to downscale both individual station locations as well as the entire
continental U.S. high-resolution grid for a limited subset of global model inputs. Through
iterating between a range of 95% to 99% of retained variance, it was determined through
root mean square errors (RMSEs) and mean absolute error (MAE) that 97% was a
generally appropriate threshold that minimized error across the continental U.S., with both
higher and lower thresholds resulting in overall higher errors.

This sensitivity analysis revealed a number of interesting and unique results. First and
most importantly, the overall effect of this filtering was to improve the quality of the
temperature downscaling. Figure 9 compares the bias in simulated vs. observed maximum
daily temperature from quantiles ranging from 0.1 to 99.9. In both cases, the downscaling
model was trained on odd decades (1950s, 1970s and 1990s) and evaluated relative to
independent observations in even decades (1960s, 1980s, 1990s). For the unfiltered (raw)
data, there are significant and wide-spread biases at the tails of the distribution. These are
noticeably reduced when the global climate model output is filtered before downscaling.

It is important to note that the improvement varied by location, with the most significant
improvements being for inland locations with higher variance in the daily temperature
record. Improvement also varied over the distribution, with the greatest improvement due
to EOF-filtering (but still greatest remaining bias) being seen at the tails of the distribution
as compared to the mean; and by climate model, with some showing greater improvements
than others.

For the station downscaling, we also found the largest improvement was achieved for the
stations with the shortest and poorest-quality records. By reducing spurious noise in the
global climate model fields, this filtering process enables the statistical downscaling model
to better utilize limited observational data and improve model training during the
historical period.

We are continuing to apply this EOF filtering method to CMIP5 temperature output fields.
To our knowledge, this innovative filtering method is not yet in use by any commonly
used downscaling method in the U.S.; however, it could be easily incorporated into
any downscaling framework.
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Figure 9. Bias in the 0.1%, 1%, SOth, 99" and 99.9" guantile of daily maximum temperature compared to observed
for cross-validation (model trained on 1950s, 1970s and 1990s; evaluated on 1960s, 1980s, and 2000s) for raw
GCM output (left) and GCM output that has been filtered to remove low-level noise that accounts for 3% of the
variance in the fields at the spatial scale of the maps. Simulations shown here are for the CCSM3 model;
simulations with other climate models show similar results.

Compared to temperature, precipitation tends to display a greater amount of smaller-scale
variability in both observations and GCM output fields. The EOF filtering approach was also
tested on precipitation, but in this case even a low level of noise removal was found to
degrade rather than assist precipitation downscaling. For that reason, no filtering was
conducted on the precipitation input fields

Spatial interpolation of raw global climate model output fields to the scale of the high-resolution gridded
observations significantly improved downscaling performance by creating a smooth transition in the shape of
the GCM quantile-OBS quantile relationship from one grid cell to the next.

Even after filtering for both temperature and precipitation, initial downscaling of GCM
fields showed that an imprint of the original GCM grid cell often remained. This imprint
was not generally visible in annual or seasonal mean values, but rather in thresholds (e.g.
number of wet days per year) or extremes (e.g. number of days per year over 90°F). The
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reason for this remaining “imprint” was determined to be the result of a sharp change in
the shape of the distribution of daily temperature and precipitation from one GCM grid cell
to the next. With a quantile regression-based downscaling approach, smooth changes in the
shape of the probability distribution over space are required to produce smooth output
fields.

To address this issue, specifically to improve the homogeneity of the projections towards
the tails of the distributions (e.g. cold/hot or wet/dry), the original downscaling was
completely re-done after all global model output fields were linearly interpolated to the
scale of the one eighth-degree grid before being used as input to the downscaling routine.
These interpolated fields were also used as input to station-based downscaling. Figure 10
provides a side-by-side comparison of downscaled projections before and after the spatial
interpolation of the predictor fields.

As with the EOF filtering method, this simple interpolation of global climate model-based
predictors can be used by any downscaling method to improve the spatial homogeneity of
their results. Its application significantly improved model performance, particularly
for cold temperatures and for spatial patterns of precipitation.

Had-original Had-regridded

Had-original Had-regridded

0.05 041 0.2 0.3 0.5 0.6 1 1.5 2.5 3 5 6

Figure 10. Comparison of simulated bias in 90" (top) and 99" (bottom) quantile of daily maximum temperature
between downscaling using raw GCM output directly (left) and downscaling using HadCM3 spatially interpolated
GCM output fields as predictors (right). The imprint of the original global climate model grids can be seen clearly in
the left-hand figures, but does not appear in the right-hand figures where interpolated GCM fields were used as
input to the downscaling model.
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A rigorous quality control and nearest-neighbor process was developed to identify and remove erroneous
observed temperature and precipitation values. This is a generalizable code that can be used to quality control
any observational dataset.

Most government agencies perform some operational QC on observational data before it is
released. In terms of the data sets used here, the Global Historical Climatology Network
(GHCN; http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/) contains daily maximum and
minimum temperature and daily cumulative precipitation. According to their metadata,
GHCN station data undergoes extensive testing for operational QC including checks for:

. Duplicate data

. World record exceedence

. Consecutive identical values

. Frequent-value check (precipitation only),

. Gap check, Z-score-based climatological outlier check,
. Internal consistency

. Temporal consistency (spike or dip),

. Lagged temperature range

. Spatial consistency (corroboration of anomalies)

The National Climate Data Center (http://www.ncdc.noaa.gov/ghcnm/v3.php) quality
control tests include:

. Consecutive month duplication
. Series duplication

. Streak

. Isolated value

. Climatological outlier

. Spatial inconsistency

The U.K. Meteorological Office Integrated Data Archive System land surface observational
database (MIDAS, http://badc.nerc.ac.uk/view/badc.nerc.ac.uk_ATOM__dataent_ukmo-
midas/), contains daily mean temperature and daily cumulative precipitation. Midas data
also includes raw temperature readings taken every 3 hours or every 6 hours depending on
the observation location and the year. Midas data, like GHCN and NCDC, is checked
extensively prior to release (http://badc.nerc.ac.uk/data/surface/ukmo_guide.html#7).
Midas tests include:

. Ingestion checks

. Checks against neighbors
. Manual quality control

. Gross errors

37



Despite the fact that most of the station data used in this project had undergone a
standardized quality control, during the course of the project there were numerous
instances of clearly erroneous values (e.g. very cold days in warm locations, days where
maximum temperature was lower than minimum temperature, days with negative
precipitation) in the observations that strongly degraded the quality of the statistical
downscaling model.

The disproportionate impact of even a single erroneous daily value on a quantile
regression-based statistical model can be illustrated by this example from southern Florida.
The GHCN location of Hileah, a suburb of Miami, had one data point with daily temperature
20°C colder than any other day at that location or any nearby location. When that data

point was included in training the full ARRM model (indicated by “full” in Figure 11), the
RMSE in the resulting cross-validated downscaling was nearly an order of magnitude

higher (2°C instead of ~0.2°C, left figure) than when that single data point was removed
(right figure).

Hialeah, FL Hialeah, FL
Tmax Tmax
91 @ CCSM3 91 @ CCSm3
GFDL-CM2.1 | GFDL-CM2.1
& O HadCM3 8 O HadCM3
- @ PCM 74 O PCM
O Average O Average
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g 4 2 4
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3 31
2 27
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i O O s Raw GCM Full
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Figure 11. Comparison of error in downscaled daily maximum temperature for the location of Hileah, Florida, with
(left) and without (right) a single cold temperature outlier included in the downscaling model.

Prior to commencing the project, it was assumed that quality-controlled station data would
be sufficient; as with the global climate model outputs, that assumption was clearly not
valid and had to be addressed directly before station data could be reliably downscaled.

To address, at minimum, the most readily-identifiable problems with individual daily
values in any observational dataset, we greatly expanded the original scope of this project
to develop our own comprehensive weather station data quality control process. We also
obtained and incorporated additional datasets (NCDC, MIDAS, etc.) into the database of
station observations to provide maximum density for a nearest-neighbor test of outlier
values at any individual station.

The first step in our quality control process was to create a master file documenting the
name, latitude, and longitude of every station in the various datasets available. Using
latitude and longitude values, stations within 1km of each other were assumed to be co-
located and only the longest unique station record for each variable was retained.
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The quality control process consists of two steps: first, individual quality control for each
station; and second, a nearest neighbor approach to validate outliers identified relative to
the climatology of each month. Individual quality control identified and replaced with N/A
any values that failed the following tests:

* Tmin>Tmax - Daily minimum temperature exceeds the daily maximum temperature.

* Realistic Range - Daily reported minimum temperature exceeds the reported
maximum, any temperature values above (below) the highest (lowest) recorded values
for North America (-50 to 70°C) or with precipitation below zero or above the highest
recorded value for the continental U.S. (915 mm in 24h).

* Repeated Values - Daily maximum temperature, daily minimum temperature, daily
average temperature, or non-zero daily precipitation values repeat for 5 or more
consecutive days to within one tenth of a mm per day or one hundredth of a degree
Celsius.

Unlike many of the preceding research efforts into data quality control, this process
removes data when errors are found without replacing the data with new values and is
fully automated, requiring no labor-intensive manual verifications or judgments.

Many of these tests appear redundant with operational QC already performed on these
datasets. However, preliminary testing revealed Tmin>Tmax examples in every dataset,
even those that explicitly test for it (Figure 12). Realistic Range errors are also common in
all datasets. Overall, this automated, standardized quality control process flagged errors in
99% of the GHCN observation locations and 10% of the MIDAS observation locations tested
and removed 0.4% of the GHCN temperature data and 0.01% of the MIDAS temperature
data.

Tmin over Tmax
50°N

45°N

40°N

35°N

30°N

25°N

120°W 105°W 90°W 75°W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 12. Contour map of station locations in the GHCN database over the continental U.S. where instances of
minimum temperatures greater than maximum temperatures have occurred. Values show the number of times
each has occurred for a given location or group of stations.
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In the second step of the quality control process, the merged database of station locations is
first used to identify up to 10 “nearest neighbors” for each individual weather station
within 100km of its location. For each weather station, the monthly (for temperature) and
seasonal (for precipitation) distributions are ranked and the highest and lowest N values
are identified. The nearest neighbor stations are then queried to see if the days on which
values 1 through N occur are also days in which the highest M values for the neighbor
station occur, plus or minus one day on either side to account for weather systems which
may be moving through the area close to midnight. Here, N is taken to be 100 and M to be
500. If any value of N does not occur within +/- one day of a value M for any neighboring
station, the value of N is replaced with an NA.

For the North-Central America region shown in Figure 8, the nearest neighbor test
identified 82,515 non-corroborated outlier values for maximum temperature for a removal
rate of 0.0386% and 92,437 non-corroborated outlier values for minimum temperature for
a removal rate of 0.0436%. All outlier values for precipitation were corroborated by
neighboring stations.

While comprehensive, this quality control process can not correct for all errors in the data.
One error that was identified but not corrected are the spikes of values at 0 and 32 degrees
that may be introduced by repeated (and faulty) units conversion. Temperature data can be
in Fahrenheit or Celsius and in tenths of degrees or degrees. Precipitation data can be in
tenths of inches or millimeters. For consistency within this dataset, all data was converted
to tenths of degrees Celsius for temperature and mm/day for precipitation. However,
much of the data had likely already undergone multiple conversions (particularly that of
the MIDAS database) and a number of stations already displayed a “binned” effect
indicating loss of information in transcription and/or translation, as well as the possible
introduction of erroneous values such as suspicious spikes at 0 and 32°C (Figure 11).
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Figure 11. Histogram of raw daily maximum temperature values from the MIDAS dataset, in degrees Celsius,
show clear bins where information has likely been lost in units conversion and potential errors may have been
introduced relative to 0°C and 32°F (note spike at 32°C in left-hand figure and 0°C in right-hand figure).
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The quality-controlled daily temperature and precipitation have now been downscaled and
are incorporated into the database of high-resolution projections, expanding the original
geographic scope of the analysis to encompass the entire continent of North America. This
dataset has not been made available for public distribution as part of this project since it
contains largely original data that requires permission from the original agency, but it has
been used as input to the station-based downscaling that is available for distribution as a
product of this work.

The downscaling model now allows multiple precipitation predictors to improve simulation of seasonal
precipitation.

The ARRM downscaling model was modified to allow for multiple precipitation predictors
(convective, large-scale, and total precipitation). This modification enabled the model to
better resolve the drivers of precipitation in summer vs. winter and in warmer vs. colder
climates, and reduced biases in both seasonal and extreme precipitation. Models with
multiple precipitation predictors consisted of: CCSM3, CNRM, ECHAMS5, ECHO, HadGEM
and PCM. For the remaining models, the original predictor of total precipitation continued
to be used.

Initial precipitation downscaling showed unacceptable levels of pixilation in the resulting daily precipitation
fields for high precipitation events. This problem was solved by incorporating a 3x3 matrix into the downscaling
and an analysis code developed to quantify the resulting improvement in spatial autocorrelation of daily
precipitation fields.

In the original dataset, individual rainy days with high precipitation over large spatial areas
showed unacceptable levels of pixilation, with adjacent grid cells showing both higher and
lower precipitation amounts than a similar event in the historical record. This problem was
the result of the downscaling approach treating every grid cell as an individual data point
under the assumption that the global climate model output fields were able to provide the
spatial coherence and homogeneity in the resulting downscaled high-resolution
projections. Although this assumption held true for temperature, it clearly failed for high-
precipitation events at the tail of the distribution, where small differences in historical data
points (possibly only one or two) could produce large differences in total precipitation for
adjacent grid cells.

To solve this problem, the ARRM downscaling model was modified to train gridded
precipitation models on a 3x3 grid in order to stabilize the statistical fit at the tails of the
distribution. All gridded precipitation downscaling was re-run from scratch with the new
code. The modification to the code significantly increased the run time of the statistical
model due to the greater volume of data used as input to train the statistical model, but was
successful in creating a much more stable and homogeneous fields of daily precipitation.

The problem of pixilation is common in the field of image processing, where it is typically
referred to as “salt and pepper”. Moran’s I is a measure of spatial autocorrelation that is
often used to assess the pixilation of an image by assessing the differences between a grid
of pixels. This statistical measure is defined as:
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where N is the number of spatial units indexed by i and j; X is the variable of interest; X-bar
is the mean of X; and wj; is an element of a matrix of spatial weights (Source: Wikipedia).

To quantify the extent to which the 3x3 downscaling approach actually reduced pixilation
and the extent to which model output remained biased relative to observations, an analysis
code calculating the spatial dependence of daily precipitation fields in terms of the visual
appearance of rain storms, the distance between pixel values, and Moran’s [, was
developed. This is a generalizable analysis package that can be used to test and compare the
coherence of any spatial data field.

The analysis code first identifies the top 100 wettest rain events in the continental U.S. in
each historical simulated and observed period (1960 to 1999) and cuts out a regular
square of 81x81 one-eighth degree grid cells centered on each storm. Global climate
models are initialized in the late 1800s and thereafter permitted to develop their own
patterns of natural variability. Although models are expected to produce climatological
conditions (averaged over multiple decades) that resemble observed, they are not and
should not be expected to reproduce any specific rainstorms or other weather events on
the actual day they occurred. For that reason, rain events must be identified individually
for each model simulation.

The analysis code then maps individual events, so they can be compared visually; calculates
the differences between individual grid cells and plots a histogram of those differences for
both the top10 and top 100 wettest events; and finally calculates the value of Moran’s I for
each gridcell.

Using this analysis code, it can be seen that introducing a 3x3 training grid into the
precipitation downscaling code significantly reduced pixilation for individual rain storms,
creating spatial statistics for the downscaled data that resembled observed characteristics
much more closely than the original fields. Figure 13 compares the characteristics of the
differences between each individual grid cell for observed (top), model old (second row),
model new (third row) for GFDL CMZ2.1. Similar results (not shown) were obtained for
other models.

In Figure 13, the shape of the distribution is noticeably broader for the non-3x3 (old)
downscaling (middle row) as compared to observations (top row), indicating a much wider
range in inter-grid values. In the new 3x3 downscaling, the standard deviation of the
distribution is significantly reduced and resembles observed much more closely.

The mean value of Moran’s I for the “old” GFDL precipitation is 0.93 for a 25km radius and
0.69 for a 150km radius. The mean value for the “new” GFDL simulated precipitation is
0.97 for a 25km radius and 0.81 for a 150km radius, where the higher value indicates a
spatial field that is more closely auto-correlated.

42



0.6
|
0.6
|

0 _| v
S S
< | .
o o
= =
‘@ o ] ‘@ o ]
§ o § o
[s] a
N N
S S
ST ST
o | o
S S
I
-8
o _ © _
S S
0 _| v
S o
< | <
S <]
=2 =
B3 o | 2 o |
§ © $ o
a [s]
o N
IS <]
- _| - 4
S )
o | e
IS S
I T T T T T T 1
-6 -5 -4 -3 -2 - 0 1
© _ @ .
S S
0 _| ©v
S S
< | <
S S
= 2z
o o | e o |
§ © § o
[=} a
o | o
S S
- _| - 4
o o
o | <
IS IS
I T T T 1 I T T 1
-4 -2 0 2 4 -6 -4 -2 0

Figure 13. A histogram of the differences in 24h cumulative precipitation between four (up,
down, left, right) neighboring grid cells (left) and eight (a 3x3 grid) neighboring grid cells (right)
for the top 100 wettest precipitation events for the period 1960 to 1999, for observations (top),
“old” downscaling where each grid cell was processed independently (middle) and “new”
downscaling where grid cells were downscaled within a 3x3 matrix (bottom). Values shown here
are for the GFDL CM2.1 model.
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Figure 14 compares images of 24h cumulative precipitation resulting from six storms (the
wettest, 5th, 10th, 25th 50th and 100t%) in the observed, old downscaled, and new
downscaled dataset. This figure shows results from the HadCM3 model; similar results (not
shown) were obtained for other models. “Old” downscaled precipitation showed a clear
shadow of the original global climate model grid and was highly pixilated. “New”
downscaled precipitation now exhibits a much more homogeneous structure that more
closely resembles observed.
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“NEW” DOWNSCALED
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Figure 14. Maps of the top wettest rain events from 1960 to 2099 clearly illustrate the improvements gained by
spatial interpolation of global climate model predictors and downscaling using a 3x3 grid. The first set of maps
show observed rain storms, the second show “old” downscaled rainstorms, and the third show “new” downscaled
storms. Values shown here are for the HadCM3 model. Units are in mm/day for a 24h period.

47




Finally, the value of Moran’s I for individual grid cells is plotted and compared to
observations in Figure 15 for spatial radii of 25km (left) and 150km (right). Results from
the GFDL CM2.1 model are shown. Again, similar results were obtained for other models
(not shown). While the spread in individual grid cell values is still higher than observed for
the “new” downscaling as compared to the old, introducing the 3x3 downscaling clearly
provides a significant improvement in the spatial autocorrelation of the precipitation fields
for individual rain events.
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Figure 15. 24h cumulative precipitation values of individual grid cells vs. the values of their neighbors for the top 1,
10 and 50 wettest events in observations (first page), “old” GFDL downscaling (second page) and “new” 3x3
downscaling (last page). Points with high influence measures between the data and its spatially lagged neighbors
are highlighted with a diamond. Results based on calculation of Moran’s I statistic.
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With professional optimization and parallel computing resources from the TTU High
Performance Computing Center, clock time to compute the full set of downscaling was
reduced from more than one century to 1 year.

At the beginning of the project, the downscaling code required approximately 20 minutes
to complete calculations for one location. Multiplying this time by approximately 100,000
grid cells plus 10,000 individual station locations, 50 model/scenario combinations, and 3
variables yielded an estimated completion time of over 600 human years, assuming
continuous run time. Although the original funding supported purchase of two additional
servers, this only reduced the estimated run time to 200 years.

The first step in reducing the computational demand of this project was to identify an
expert in optimization of R code. Dr. Matthew Pratola, formerly of Los Alamos National
Laboratory, completed his dissertation on this topic. With additional research funds
external to this project, he was engaged to optimize the downscaling code and was able to
successfully reduce the run time for an individual location from an average of 20 minutes
to 30 seconds. This reduced the scope of the project to 15 years on an individual server and
5 years using the additional two servers purchased for this project.

The next step in improving the computational efficiency of the downscaling was to
parallelize the code to enable application using the Texas Tech University High
Performance Computing Center (TTU-HPCC) resources as well as TTU shares in the Texas
Advanced Computing Center hosted at the University of Texas.

The code was parallelized by dividing the observations and global climate model predictors
up into individual longitude slices and providing one slice to each processor. Statistical
downscaling code is nearly infinitely parallelizable, as it can be sliced into smaller and
smaller pieces as needed. Too much parallelization, however, can be counter-productive as
the number of files multiplies the time required to post-process the resulting “minifiles”
into a region-wide grid using a series of scripts invoking netCDF NCO and CDO utilities. For
that reason, a balance was struck between run times and file sizes. Computation time for
222 grid cells averaged between 2 to 4 hours for temperature (longer than on an individual
server as [/0 times were greatly reduced although computational time remained similar),
slightly longer for precipitation with one predictor, and more than double for precipitation
with multiple predictors.

Taken together, this optimization and parallelization of the code enabled all downscaling to
be completed in approximately one year of computer clock time. Much of the original
downscaling had to be re-calculated with EOF-filtered temperature, spatially interpolated
predictors, and the new 3x3 precipitation code, which doubled the duration of the
calculations and total CPU usage to more than 2 million over two years.

This optimized and parallelized computing framework will be used for future downscaling
of CMIP5 simulations.



A comprehensive error and bias analysis code evaluates 22 types of errors and 74 types of
biases in the high-resolution climate projections relative to observations. This is a
generalizable code that can be used to quality control any downscaled dataset or compare
any observational datasets.

In conducting any analysis involving tens of thousands of files and multiple terabytes of
data, likelihood of error is high. For that reason, we developed a rigorous framework to
evaluate the downscaled projections and the gridded observations for 17 types of errors in
temperature fields and 5 types of errors in precipitation. Errors include values exceeding
the highest or lowest observed historical values for the continent and for that individual
grid cell; missing values; repeated values; days where minimum temperature is higher than
maximum temperature (as we knew this error already occurred in station data); and lack
of expected seasonal differences or trends in the data over time.

The first iteration of these error tests identified a number of “minifiles” which had saved
incorrectly, as well as peculiarities to various model inputs that resulted in erroneous
missing values. These errors were corrected and the resulting final datasets incorporate
those corrections. Each specific type of error is listed in the tables below and maps of the
errors for each global model and gridded observed values are provided in Appendix D.
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TEMPERATURE ERRORS (17 TESTS)

Test

| Model | Obs

REALITY CHECK

1. Daily maximum temperature value exceeds the
continental US highest observed daily temperature

Pass/Fail for the historical period (simulated
1960-2009; observed 1960-1999)

2. Daily maximum temperature value is lower than the
continental US lowest observed daily temperature

3. Daily minimum temperature value exceeds the
continental US highest observed daily temperature

4. Daily minimum temperature value is lower than the
continental US lowest observed daily temperature

EXTRAPOLATION CHECK

5. Simulated daily maximum temperature exceeds Total number of daysin | N/A
highest daily maximum temperature observed at that simulated historical
location or grid cell (1960-1999) period (1960-2009)

6. Simulated daily maximum temperature is lower than “ N/A
the lowest daily maximum temperature observed at
that location or grid cell (1960-1999)

7. Simulated daily minimum temperature exceeds “ N/A
highest daily minimum temperature observed at that
location or grid cell (1960-1999)

8. Simulated daily minimum temperature is lower than “ N/A
the lowest daily minimum temperature observed at
that location or grid cell (1960-1999)

CONSISTENCY CHECK

9. Daily minimum temperature exceeds daily maximum
temperature

Percentage of days per year (simulated
1960-2099; observed 1960-1999)

MISSING VALUES CHECK

10. Missing (NA) daily maximum temperature values

Total number of days in entire period
(simulated 1960-2099; observed 1960-1999)

11. Missing (NA) daily minimum temperature values

“

TREND TEST

12. Does maximum daily temperature increase from 1960- | Number of times it N/A
1989 to 2020-2049, 2050-2079, and 2080-2099? does not increase, from
Oto3
13. Does minimum daily temperature increase from 1960- | “ N/A
1989 to 2020-2049, 2050-2079, and 2080-2099°?

REPEATS CHECK

14. How many times do daily maximum temperature
values repeat more than 3 times in a row (to 0.01°C)?

Total number of times in historical period
(simulated 1960-2009; observed 1960-1999)

15. How many times do daily minimum temperature
values repeat more than 3 times in a row (to 0.01°C)?

“

SEASON TEST

16. How many times is the average of Jan-Feb daily
maximum temperature warmer than the average of
Jul-Aug for the same year?

Total number of times in period (simulated
1960-2009; observed 1960-1999)

17. How many times is the average of Jan-Feb daily
minimum temperature warmer than the average of

Jul-Aug for the same year?
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PRECIPITATION ERRORS (5 TESTS)

Test | Model | Obs

REALITY CHECK

1. 24h cumulative precipitation exceeds the continental Pass/Fail for the total period (simulated
US highest observed value 1960-2099; observed 1960-1999)

“

2. 24h cumulative precipitation values below zero

EXTRAPOLATION CHECK

3. Simulated 24h precipitation exceeds highest 24h Total number of daysin | N/A
precipitation observed at that location or grid cell historical period (1960-
1999)

MISSING VALUES CHECK

4. Missing (NA) daily precipitation values Total number of days in entire period
(simulated 1960-2099; observed 1960-1999)

REPEATS CHECK

5. How many times do non-zero 24h cumulative Total number of times in historical period
precipitation values repeat more than 3 times in arow | (simulated 1960-2009; observed 1960-1999)
(to 0.1mm)?
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Biases in downscaled projections are typically evaluated using a cross-validation approach,
where the statistical model is trained on one set of historical data (e.g. odd years) and then
evaluated relative to an independent set of historical data (e.g. even years). Lacking future
“observations”, this type of cross validation is primarily used to assess the stationarity of
the model: i.e. to what extent is the model able to reproduce climate conditions not used to
train the model? These types of biases also reflect the adequacy of the initial training data:
i.e., did the sample of local climate used in training adequately capture all the important
relationships between large-scale circulation at the spatial scale of the global climate model
and high-resolution temperature and precipitation on the ground? Is the statistical model
able to reproduce an independent set of climate conditions for that location?

As discussed previously, the ARRM method is currently being evaluated in a separate USGS-
funded project that assesses the stationarity of this statistical downscaling method relative
to future projections by end-of-century under higher emissions. In this project, ARRM
performance is not compared to an independent sub-set of historical data, but rather to a
set of high-resolution 25km dynamical model simulations with significantly different
characteristics than the historical period on which the statistical model was trained. As
shown in Figures 4-6, the ARRM method is relatively stationary even by end-of-century,
with the exception of systematic warm biases along the coast for high quantiles of both
maximum and minimum temperature.

Hence, rather than reevaluate the stationarity of ARRM-based downscaling relative to
historical data, instead we chose to evaluate the ability of the ARRM model to remove
global climate model biases, as this is the primary function statistical downscaling models
are intended to perform.

To accomplish this goal, the ARRM model was trained on the full set of historical data from
1960 to 1999 then used to downscale to that same period (not an independent dataset) in
order to quantify the ability of the ARRM model to correct for global climate model biases.
It is important to note that a cross-validation approach would not resolve this specific
feature aspect of the downscaling model, and equally important to note that this approach
does provide any information on the stationarity of the downscaling method, as would a
cross-validation approach. These are two separate questions, and we address them in two
completely different ways.

Although the ARRM downscaling approach is able to remove much of the biases in global
climate models at the regional to local scale, this bias analysis shows how the choice of
global model still influences the resulting projections. Biases were calculated for 48
temperature and 26 precipitation indicators, including quantiles from 0.1 to 99.9, seasonal
temperature and precipitation, and thresholds and extremes. For some models, the ARRM
downscaling is able to remove much of the bias relative to historical observations. For
other models (particularly for BCC-BCM2), the statistical model is not able to remove all of
the biases due to the global model simulations.

Each specific type of bias that was examined is listed in the tables below and maps of the
biases corresponding to each global model as compared to historical gridded observed
values for the same time period (1960-1999) are provided in Appendix E.
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TEMPERATURE BIASES (48 TESTS, all comparing simulated values to observations for

the period 1960-1999, model minus observed values)

Test

| Model

QUANTILES

1-9. Values of the 0.1, 1, 10, 25, 50,75,90, 99, and 99.9"
qguantiles of the distribution of daily maximum
temperature

Absolute value, degrees C

10-18. Same, for daily minimum temperature

THRESHOLDS

19-22. Number of days with daily maximum temperature
above 32, 65, 90, and 100°F

Percentage of days, calculated as (mod-
obs)/obs

23-26. Number of days with daily minimum temperature
below 20, 32°F and above 65, 85°F

EXTREMES

27. Average temperature of hottest 5-day period of the
year (from daily maximum temperature)

Absolute value, degrees C

28. Average temperature of coldest 5-night period of the
year (from daily minimum temperature)

29. Average temperature of hottest day of the year (from
daily maximum temperature)

30. Average temperature of coldest night of the year (from
daily minimum temperature)

31. Temperature of the hottest day in 30 years (from daily
maximum temperature)

32. Temperature of coldest day in 30 years (from daily
maximum temperature)

33. Temperature of warmest night in 30 years (from daily
minimum temperature)

34. Temperature of coldest night in 30 years (from daily
minimum temperature)

RANGE

35. Difference between hottest day and coldest night in 30
years

Absolute value, degrees C

36. Difference between mean maximum and minimum
temperature over 30 years

SEASONS

37-40. Seasonal mean daily maximum temperature (winter
or DJF; spring or MAM; summer or JJA; fall or SON)

Absolute value, degrees C

41-44. Same, for mean nighttime minimum temperature

IMPACT-RELEVANT INDICATORS

45. Annual cumulative degree-days (threshold of 65°F)

Percentage of degree-days, calculated as
(mod-obs)/obs

46. Onset of spring (defined as last day with minimum
nighttime temperature below freezing)

Absolute value, days

47. Length of growing season (from the last spring frost to
the first fall frost)

48. Onset of summer (defined somewhat arbitrarily as the
first day of the year over 90°F)
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PRECIPITATION BIASES (26 TESTS, all comparing simulated values to observations for
the period 1960-1999, model minus observed values)

Test | Model

QUANTILES

1-9. Values of the 0.1, 1, 10, 25, 50,75,90, 99, and 99.9™ Absolute value, mm

qguantiles of 24h cumulative precipitation (wet days only)

THRESHOLDS

10-11. Number of wet days with 24h cumulative Percentage of days, calculated as (mod-
precipitation above 0 (including trace precipitation) and obs)/obs

above 0.01 (excluding trace precipitation)

12-15. Number of days with 24h cumulative precipitation
above 0.5, 1, 2, and 3 inches

EXTREMES
16. Average 24h cumulative precipitation on the wettest Percentage of mm, calculated as (mod-
day of the year obs)/obs

“

17. Average 24h cumulative precipitation on the 5-day
wettest period of the year

18. 24h cumulative precipitation on the wettest day in 30

years

SEASONS

19-22. Seasonal cumulative precipitation (winter or DJF; Percentage of mm, calculated as (mod-
spring or MAM; summer or JJA; fall or SON) obs)/obs

IMPACT-RELEVANT HYBRID INDICATORS

23. Number of snow days per year Absolute value, number of days

24. Ratio of precipitation falling as rain to that falling as Difference in the ratio (mod-obs), mm/mm
snow

25. Number of hot, dry days per year (defined as Absolute value, number of days
precipitation < 0.01” and daily maximum temperature >

90°F)

26. Number of cool, wet days per year (defined as Absolute value, number of days
precipitation > 0.01” and daily maximum temperature <

65°F)
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Initial application of downscaled projections revealed issues with both downscaler understanding of user needs
and user application of the high-resolution projections. These have been addressed by improving downscaling
methodology and documentation, including preparing a brief “user’s guide” to accompany the data online.

Alarge proportion of downscaling is conducted by practitioners who have a detailed
understanding of the specific uses to which their high resolution projections will be put.
This dataset is unique in that it is intended to be broadly used across a range of
applications, many of which may be unfamiliar to the research team developing the
projections.

Helpful input was provided by initial users of the dataset, who identified some issues with
the data that had not previously been considered in the downscaling community. For
example, a test for pixilation of daily rainfall is not part of any downscaling evaluation
framework, but is obviously relevant to use of data in impact analyses. This and other
related issues were incorporated back into the downscaling process, and where needed,
original projections were re-generated in order to address user concerns. Also, a set of
indicator analyses were developed, some of which were relevant to evaluating the dataset
but others of which were primarily intended to provide a useful summary of the data to
users in various impact communities.

Users also provided helpful feedback on perceived errors in the dataset, leading to the
suggested creation of a “users guide” to high-resolution climate projections to adjust user
expectations regarding what is and is not considered to be an error or a problem in climate
projections. For example, users may assume that conditions on a given simulated day, such
as July 18, 1992, should match observed; or that the presence of an “NA” value in a
downscaled dataset is an error. The brief user’s guide on the next page provides general
information relevant to the application and use of any climate model simulations in impact
assessments.
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A DUMMIES GUIDE TO HIGH-RESOLUTION CLIMATE PROJECTIONS

There is no one perfect climate model — so don’t waste your time trying to find it! The scientific
literature is clear that, for most analyses, the best approach is to try and use as many climate models as
possible.

If an analysis of the climate model’s ability to simulate large-scale weather patterns or other climate
features that a model is supposed to be able to simulate at the scale of 100s to 1000s of km has shown
that a certain model or models are demonstrably incapable of simulating relevant large-scale climate
features over your region of interest (as is the case for models in the Arctic, for example — see Overland
et al. 201), then a case can be made for removing poorly-performing models from the ensemble.

Do not attempt to select a “best” model by comparing biases in seasonal temperature or precipitation
for your location of interest. This evaluation method offers no guarantee that the top-performing
models in terms of historical biases will be able to simulate the impacts of global change on the same
region.

If using multiple climate model simulations for your analysis, always average across climate models as
the very last step in the analysis. Unless the relationships between climate change and the impacts being
studied are entirely linear, averaging across climate models too early in the analysis will remove the
variability from the climate projections, leading to incorrect results.

Do not average across multiple emission scenarios. Scenarios are not like physical systems, where
averaging can improve the quality of the data. Scenarios are entirely separate, independent pictures of
what the future may look like, given a set of assumptions regarding socio-economic and technological
development. Results of any analysis should be averaged across climate models, but presented
independently for each emission scenario used.

There is no one most likely emissions scenario: not the highest, not the lowest, and certainly not the
middle scenario. The one thing we know for sure is that it is impossible to predict human behavior. In
fact, by studying the impacts of climate change, we can hope that we are dynamically changing the
likelihood of these scenarios by our work!

Which scenario(s) to use depends on which guestions are most relevant to your analysis. Using a higher
scenario will quantify the impacts of continued dependence on fossil fuels. Using a lower scenario will
capture the impacts that will have to be adapted to, even if mitigation occurs. Comparing the results
from a higher vs. lower future scenario can quantify the benefits of mitigation in terms of impacts
avoided.

Downscaled projections have missing or NA values in them for various reasons. Sometimes the global
climate model outputs got messed up or misplaced. Some models only have 360 days per year. Some
models only saved certain years. NA values are not errors; they are just characteristics of the data that
have to be worked around.

Climate projections are intended to match observations over climate time scales of decades, not days.
Do not expect a downscaled climate simulation to match day-to-day observations at any given location.
The averages should match over 20-30 years, but climate models are allowed to develop their own
unique patterns of day to day climate variability.
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It's a good idea to use multiple global climate model simulations and multiple future emission scenarios,
because these capture a range of scientific and socio-economic uncertainty in future projections. It is
not necessarily a good idea to use multiple statistical downscaling methods. Differences between
downscaling methods are typically not due to scientific uncertainty, but rather due to limitations in the
way the various models resolve the full distribution of the variable of interest.

Over the next decade or two, the most important source of uncertainty in future projections is natural
variability. This is due to the inertia of the climate system in responding to human emissions, the inertia
of the socio-economic system in initiating change, and the fact that many major sources of natural
variability in climate, which affect both global and regional climate, operate over time scales shorter
than 20 years.

Scientific uncertainty in the response of the climate system to human activities is the main source of
uncertainty in temperature over the next few decades, and in precipitation through the end of the
century.

Human or scenario uncertainty (what our emissions will be) is the largest source of uncertainty in
temperature past mid-century.
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CONCLUSIONS AND RECOMMENDATIONS

This project has produced a 6-terabyte database of high-resolution projections of daily
maximum and minimum temperature and 24-hour cumulative precipitation covering the
continental U.S. and Alaska. Future projections are based on simulations from 16 global
climate models and four future emission scenarios, from higher to lower, and have been
generated for both a regular grid and for individual station locations for the period 1960 to
2099.

Many challenges were encountered during the course of this project. They included scale-
related issues in completing the magnitude of calculations required to generate the
database, new demands being made of the downscaled projections that required re-
thinking the methods used to generate and evaluate the database, and having to quality-
control both model and observational data that originated from external sources which had
represented the data as being of sufficient quality.

In order to address these and other issues that arose in the course of the project, the scope
of the project was significantly expanded to include 11 new tasks not included in the
original funding request, as well as to re-generate a large amount of the original data
including all of the precipitation downscaling. New tasks covered a broad range of topics,
from professional optimization of the downscaling code to construction of a detailed
quality control code for observed station data.

Despite the challenges and setbacks encountered during the course of this project, and
despite the fact that overall project workload was increased (in terms of new analysis, new
code developed) by more than a factor of 3 compared to the initial scope of work, every
project task has been completed successfully and the results of this project are not limited
to the actual data produced. The modeling framework developed and refined in this project
now exists to be built up and applied to new climate model simulations and new
frameworks.

At this time, we continue to evaluate and improve downscaling methods. We are involved
in a number of efforts to interact with and educate users of climate data as well as
downscalers (see below). We are already adding to the existing dataset with new CMIP5
simulations. As this data is made available for public use, we also recommend that it
incorporate user ability to define and calculate secondary indicators and extract data for
individual locations and time periods. We hope this project will provide the basis for
continued efforts to standardize and evaluate downscaling methods and to build state-of-
the-art high-resolution climate modeling datasets for impact assessments.
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OUTREACH

The data and methods used in this database have been incorporated into presentations
made to a broad range of professional audiences, from non-profit organizations such as the
National Wildlife Federation to federal agencies such as the Department of Transportation
or Fish and Wildlife Service to academic collaborators in the Climate Science Center
network.

PI Hayhoe has authored a guidebook and a series of educational videos for the US FWS on
use of climate projections in impact assessments that references this work, to be released
in 2013.

The projections generated by this project are expected to be broadly used throughout the
Climate Science Center network in the South Central region and at the national scale. They
will also be used in the upcoming 2014 U.S. National Climate Assessment and in the
Environmental Protection Agency’s work on climate indicators.

This research has resulted in one published article (Stoner et al. 2012), one submitted
article (a review article for the National Climate Projections Platform, submitted to EOS),
and four articles in preparation, describing: (1) the station-based quality control process
and results of its application to the GHCN and MIDAS datasets; (2) analysis of the database
projections; (3) analysis of future global mean temperature-based projections; (4) and a
discussion of the sources of uncertainty in downscaling. The work has also been presented
at professional meetings such as the Fall Meeting of the American Geophysical Union.
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APPENDIX A. Weather Stations

This Appendix lists the ID, latitude, and longitude of the weather stations for which
sufficient data was available to downscale daily maximum and minimum temperature and
precipitation. There are a total of 8,212 station records for maximum temperature, 8,176
for minimum temperature, and 10,272 for precipitation. Due to its length, this Appendix is
provided as a separate Excel file.
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APPENDIX B. Regional Temperature-Precipitation Scatter Plots

This Appendix provides scatter plots of projected changes in temperature and precipitation
for 8 regions: Pacific Northwest, Southwest, Northern Great Plains, Southern Great Plains,
Midwest, U.S. Northeast and Canadian Maritimes, Mid-Atlantic, and Southeast. Projected
changes or anomalies are shown for seasonal and annual values as well as for the average
number of hot/dry and cool/wet days per year for 2020-2039, 2050-2069 and 2080-2099
relative to 1960-1979. Each scenario is indicated by a different symbol, and two versions of
each plot are provided, with and without global climate model labels on each point.

This plot style was originally created by ]. Raisanen as part of the IPCC Third Assessment
Report DDC archive. Thanks to Chris Anderson (Iowa State) for suggesting their inclusion
here.

Scatter plots are also provided as Excel files in electronic format.
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APPENDIX C. Climate Projections for Primary and Secondary Indicators

This Appendix provides maps of projected changes in a broad range of primary
(temperature, precipitation) and secondary (thresholds, derived values) climate indicators
as projected under +1, 2, and 3°C global mean temperature change relative to 1971-2000.
The left-hand column of each set of maps provides the absolute value for 1971-2000, while
the right-hand plots show the anomaly or difference relative to that period. The first row
shows the all-model average, while subsequent rows show projected values for individual
global climate models.

Original postscript files are also provided in electronic format.
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Longest Period of Dry Days < 0.01in (Fall)

Avg 1°C__

B

All Model 0°C 2°C

Anomaly
Days

CGCM3T47 ____ 0°C __1%C __2%C 3% 20

) T A - i

Actual
Days

50

45

35

30

63
b

25

20
15

10
5




Longest Period of Dry Days < 0.01in (Fall)

ECHO 0°C 1°C

2°C

GFDL-CM2.0___ 0°C _

) B

Anomaly
Days

C 20

—1 16
— 12

Actual
Days

50

GFDLCM21 ____ 0°C _
45 ; ‘& X .,"" zsb
40

35

5 ;
. i SO H

30 HadCM3 0°C
BV )
o5 :

20

15 R} A

10

HadGEM ____ 0°C _
S A 3

5

T

oot

R
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Avg Length of Dry Periods < 0.01in/day (Summer)
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APPENDIX D. Error Plots

This Appendix provides maps of temperature and precipitation error tests applied
to the gridded observations and gridded downscaling. The tests are described in
Table 5. Some error tests are pass/fail; these are indicated by green (pass) and red
(fail) scales. Other tests allow for multiple results; these use a color scale.

Thanks to Adam Terando (NCSU/USGS) for suggestions on additional error tests to
include.

Original postscript files are also provided in electronic format.
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Tmax increases over decadal time scales
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Tmin increases over decadal time scales
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Number of times winter (Jan-Feb) tmax is warmer than summer (Jul-Aug)
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Number of times winter (Jan-Feb) tmin is warmer than summer (Jul-Aug)
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A2 160-199

0,
20 25 30 35 40 45 50 c
BCM2 A2 1960 1999 CCSM3 A2 1960-1999 CGCMS T47 A2 1960 1999

A5 7980 1999
N

i N
VIIROCMEDRES A219601999\/IRICGCM2 A21960199° >

0 2 4 6 8 1012 1416 18 20  Days



Number of historical days with tmax < min observed local tmax value
Obs A2 1960-1999
T

0,

30 20 -10 0 10 ©

BCM2 A2 1960 1999 CCSM3 A2 1960 1999 CGCM3 T47 A2 1960-1999
:". o N ) “ >

0 2 4 6 8 1012 1416 18 20  Days



Number of historical days with tmin > max observed local tmin value
A2 1-199

0,
5 10 15 20 25 30 35 C
3(_3M2 A2 1960 1999 CCSM3 A2 1960- 1999 CGCM3 T47 A2 1960 1999

A5 7980 1999
N

0 2 4 6 8 1012 1416 18 20  Days



Number of historical days with tmin < min observed local tmin value
Obs A2 1960-1999
\ T Yy

0,
40 30 20 10 0 ©
3(_3M2 A2 1960 1999 CCSM3 A2 1960- 1999 CGCM3 T47 A2 1960-1999

0 2 4 6 8 101214 16 18 20 Days



Percent (%) of total days where tmin > tmax
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APPENDIX E. Bias Plots

This Appendix provides maps of temperature and precipitation bias tests in the
historical gridded downscaling simulations compared to observations over the same
time period (1960-1999). The bias tests are described in Table 6.

Original postscript files are also provided in electronic format.
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Tmax Bias in 1st Quantile
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Tmax Bias in 10th Quantile
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Tmax Bias in 25th Quantile
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Tmax Bias in 50th Quantile
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Tmax Bias in 75th Quantile
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Tmax Bias in 90th Quantile
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Tmax Bias in 99th Quantile
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Tmax Bias in 99.9th Quantile
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Tmin Bias in 0.1th Quantile
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Tmin Bias in 10th Quantile
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Tmin Bias in 25th Quantile
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Tmin Bias in 50th Quantile
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Tmin Bias in 75th Quantile
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Tmin Bias in 90th Quantile
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Tmin Bias in 99th Quantile

A2 1960-1999 CGCM3-T47 A2 1960-1999

B

BCM2 A2 1960-1999 COSM3

B B

=

A2 1960-1999 CSIRO A2 1960-1999 ECHAMS A2 1960-1999

CGCM3-T63

R

o |/ <

~~~~~~~~~~~~~~~~~~

A2 1960-1999

ECHO A2 1960-1999 GFDL-CM2.0 A2 1960-1999 GFDL-AOM A 1960-1999 HadCM3
T B

R

R

)

|/ |/ -4

|/

i H - V\v-,. H : i H H :
HadGEM A2 1960-1999 MIROC-MEDRES A2 1960-1999 MRI-CGCM2 A2 1960-1999 PCM A2 1960-1999

B Al v Al N

|/

v‘)\'
SN \7-,- H
PNy | 5!

IIIIIIIIIII_oC
-10 -8 -6 -4 -2 -15 -1-0.7505025 0 02505075 1 15 2 4 6 8 10



Tmin Bias in 99.9th Quantile
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Bias in number of days with Tmax > 32 F
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Bias in number of days with Tmax > 90 F
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Bias in number of days with Tmin <20 F
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Bias in number of days with Tmin <32 F
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Bias in number of days with Tmin <85 F
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Bias in avg tmax of hottest 5-day period of the year
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Bias in avg tmin of coldest 5-night period of the year
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Bias in hottest day of the year
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Bias in coldest night of the year
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Bias in hottest day in 30 years (tmax)
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Bias in coldest day in 30 years (tmax)
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Bias in warmest night in 30 years (tmin)
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Bias in coldest night in 30 years (tmin)
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Bias in difference between hottest day and coldest night in 30 years
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Bias in difference between mean tmax and tmin over 30 years
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Bias in mean winter (DJF) Tmax
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Bias in mean spring (MAM) Tmax
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Bias in mean summer (JJA) Tmax
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Bias in mean fall (SON) Tmax
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Bias in mean winter (DJF) Tmin
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Bias in mean spring (MAM) Tmin
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Bias in mean summer (JJA) Tmin
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Bias in mean fall (SON) Tmin
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Bias in annual cumulative degree-days (threshold of 65 F)
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Bias in onset of spring (last day with tmin < 32F)
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Bias in growing season length (last spring frost to first fall frost)
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Bias in onset of summer (first day with tmax > 90F)
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Pr Bias in 0.1th Quantile
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Pr Bias in 1st Quantile
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Pr Bias in 10th Quantile
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Pr Bias in 25th Quantile
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Pr Bias in 50th Quantile
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Pr Bias in 75th Quantile
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Pr Bias in 90th Quantile
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Pr Bias in 99th Quantile
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Pr Bias in 99.9th Quantile
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Bias in wet days with 24h cumulative Pr > 0 in
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Bias in wet days with cumulative Pr > 0.01 in
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Bias in wet days with Pr > 0.5 in
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Bias in wet days with Pr > 3 in
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Bias in average 24h cumulative Pr on the wettest day of the year
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Bias in average 24h cumulative Pr on the 5-day wettest period of the year
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Bias in 24h cumulative Pr on the wettest day in 30 years
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Bias in winter cumulative Pr (DJF)
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Bias in spring cumulative Pr (MAM)
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Bias in summer cumulative Pr (JJA)
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Bias in fall cumulative Pr (SON)
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Bias in Number of snow days per year
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Bias in ratio of Pr falling as rain to that of snow
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Bias in Number of hot, dry days per year (Pr < 0.01in, Tmax > 90F)
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Bias in number of cool, wet days per year (pr > 0.01in, tmax < 65F
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ABSTRACT: The asynchronous regional regression model (ARRM) is a flexible and computationally efficient statistical
model that can downscale station-based or gridded daily values of any variable that can be transformed into an approximately
symmetric distribution and for which a large-scale predictor exists. This technique was developed to bridge the gap between
large-scale outputs from atmosphere—ocean general circulation models (AOGCMs) and the fine-scale output required for
local and regional climate impact assessments. ARRM uses piecewise regression to quantify the relationship between
observed and modelled quantiles and then downscale future projections. Here, we evaluate the performance of three
successive versions of the model in downscaling daily minimum and maximum temperature and precipitation for 20
stations in North America from diverse climate zones. Using cross-validation to maximize the independent comparison
period, historical downscaled simulations are evaluated relative to observations in terms of three different quantities: the
probability distributions, giving a visual image of the skill of each model; root-mean-square errors; and bias in nine
quantiles that represent both means and extremes. Successive versions of the model show improved accuracy in simulating
extremes, where AOGCMs are often most biased and which are frequently the focus of impact studies. Overall, the quantile
regression-based technique is shown to be efficient, robust, and highly generalizable across multiple variables, regions, and
climate model inputs. Copyright © 2012 Royal Meteorological Society
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1. Introduction of climate change at the local to regional scale for a
broad cross-section of regions and sectors across North
America. The majority of studies of climate change
impacts in the United States, for example, rely on one
of five methods: a delta approach whereby a change
or ‘delta’ is added to observed mean annual, seasonal,
or monthly values in order to get future values (Hay
et al., 2000; as used in USGCRP, 2000); simulations
from a regional climate model (e.g. Mearns et al., 2009;
as used in NARCCAP); the Bias Correction-Statistical
Downscaling model originally developed as a front end
to the hydrological variable infiltration capacity model,
which uses a quantile mapping approach to downscale
monthly AOGCM-based temperature and precipitation to
literature (Crane and Hewitson, 1998; Wilby et al., 1998; a regular grid (Wood er al., 2004; as used in Hayhoe
Huth ef al., 2001; Stehlik and Bardossy, 2002; Wood er ¢/ /> 2004, 2008; Luers et al., 2006; USGCRP, 2009);
al., 2004; Haylock ef al., 2006; Schmidli ef al., 2006; & constructed analogue approach that maiches AOGCM-
Kostopoulou ef al., 2007; Hidalgo e al., 2008; to name simulated patterns to hlSt'OI'ICEll weather patterns (Hidalgo
just a few out of hundreds), relatively few downscaling et al., 2008; as used in Luers er al., 2006); and a

methods have been applied to quantify potential impacts lin.ear asynchronous regression approach that Qquscales
daily AOGCM-based temperature and precipitation to

- individual station locations (Dettinger et al., 2004; as
* Correspondence to: A. M. K. Stoner, Climate Science Center, Texas  ysed in Hayhoe et al., 2004, 2008, 2010).
Tech University, 113 Holden Hall, Boston & Akron Streets, Lubbock, Each of these methods has its own benefits, and each
TX 79409-1015, USA. E-mail: anne.stoner@ttu.edu . . ..

can be sufficient for certain applications. For example,

Atmosphere—ocean  general  circulation = models
(AOGCMs) and the new generation of earth sys-
tem models provide insights into the dynamic nature
of possible climate responses to anthropogenic forcing.
With spatial scales typically on the order of one half
degree or coarser, however, they are unable to simulate
climate at the local to regional scale. To compensate for
this relatively coarse resolution, a number of dynamical
and statistical techniques have been developed to
downscale climate model outputs to the impact-relevant
spatial and temporal scales at which observations are
made.

Despite the plethora of downscaling methods in the

Copyright © 2012 Royal Meteorological Society
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the simple and transparent delta approach can yield a
nearly identical downscaled annual or seasonal mean tem-
perature value as a more complex statistical model. At
the other end of the spectrum, complex regional climate
models are computationally demanding, but provide con-
sistent high-resolution projections for a plethora of sur-
face and upper-air variables. None of these five methods,
however, allows for using multiple climate models and
scenarios as input while downscaling to any spatial scale
(including both station-based and gridded), simulating
additional impact-relevant variables (such as solar radi-
ation and humidity), and adequately resolving projected
changes in daily climate extremes, at the same time.

For that reason, we have developed a new statistical
downscaling model, the asynchronous regional regression
model (ARRM). ARRM builds on the same statistical
technique used by the last downscaling approach listed
above (Dettinger et al., 2004), asynchronous quantile
regression, to define a quantitative relationship between
any daily observed and simulated surface variable that
has a symmetric distribution, with particular emphasis
on accurately resolving the relationship at the tails of
the distribution in order to capture simulated changes in
extremes. Asynchronous quantile regression removes the
time stamp from historical observations and simulations,
reordering each time series by value before matching
quantiles of observed data with those from AOGCM
output. This is important because coupled AOGCM sim-
ulations generate their own patterns of natural variability,
meaning that no day-to-day or even year-to-year corre-
spondence with observations should be expected.

The general concept of quantile regression was origi-
nally developed in the field of econometrics by Koenker
and Bassett (1978) to estimate conditional quantiles of the
response variable as opposed to the conditional mean esti-
mated by the orthodox least-squares regression method.
The quantile regression approach is of particular utility
to geospatial data, in that it can be used to determine
relationships between two quantities that are not mea-
sured simultaneously, such as an observed and a model-
simulated time series. It takes advantage of the hypothesis
that although the two time series may be independent,
their distributions may be similar.

The general technique of quantile regression has been
used in a variety of applications, including by O’Brien et
al. (2001) to determine relationships between measure-
ments of relativistic electron conditions measured from
two different satellites passing over the same area at dif-
ferent times. Dettinger e al. (2004) were the first to apply
this method to downscaling AOGCM output, to exam-
ine simulated hydrologic responses to climate change.
In this application, the first time series was observations
and the second, historical model simulations. The regres-
sion model derived from these two distributions was then
applied to transform the distribution of, or downscale,
future model simulations.

The objective of this study is to build on the foundation
of quantile regression to develop a relatively straight-
forward, flexible, efficient, and robust statistical model

Copyright © 2012 Royal Meteorological Society

that is capable of downscaling any atmospheric vari-
able, measured on a daily or monthly basis, which has,
or can be transformed into, an approximately symmet-
ric distribution. Section 2 describes the statistical basis
of the model and refinements that improve its ability to
downscale global model outputs. Section 3 describes the
long-term weather station observations and the AOGCM
outputs used to evaluate the downscaling model in terms
of its ability to simulate observed temperature and pre-
cipitation, using the same variables from the AOGCMs
as predictors. Section 4 describes how the model was
developed in multiple steps, each of which is succes-
sively tested to ensure that the additions improve the
model’s ability to reproduce historical climate. Section 5
discusses the results of applying the downscaling model
to end-of-the-century temperatures and precipitation and
the changes between downscaled and raw AOGCM out-
put compared with present conditions. Finally, Section 6
summarizes the findings of this study.

2. Model development
2.1.

The concept of quantile regression was first introduced
by Koenker and Bassett (1978), where quantiles refer to
values of a cumulative population (i.e. when the data
are sorted by increasing value) that divide the population
into equal-sized segments. Quantiles are the data values
marking the boundaries between consecutive subsets. If
the data are divided into ¢ equal-sized subsets, the kth
quantile for a variable is the value x such that the
probability that the variable will be less than x is no
greater than k/g and the probability that the variable will
be more than x is no greater than (¢ — k)/g. A distribution
has g —1 quantiles, one for each integer k satisfying
O0<k<gq.

In general, regression analysis quantifies covariance
between variables, and, if it exists, provides a model to
predict one variable on the basis of the other variables
used as input to the regression. Quantile regression
specifically estimates conditional quantile functions —
models in which quantiles of the distribution of the
predictor variable are expressed as functions of observed
covariates (Koenker and Hallock, 2001). In other words,
quantile regression results in estimates approximating the
quantiles of the predictor variable. For a time series
containing N values there are N ranks in each vector.
A model can be constructed by regressing the value at
rank n; of the simulated vector onto the value of the
same rank of the vector containing observed values, for
i=1...N (asdone for example in Dettinger et al., 2004).
This regression is asynchronous, i.e. data values that are
regressed against each other did not necessarily occur
the same calendar day, but rather correspond by quantile
or rank. The regression model derived from historical
AOGCM simulations and historical observations can then
be applied to future AOGCM simulations, to project
downscaled future conditions.

Statistical basis

Int. J. Climatol. (2012)
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Asynchronous regression is an important component
of this model, because a coupled AOGCM simulation is
free to evolve chaotically, with only the external forc-
ings being prescribed; hence, each simulation represents
one out of many possible outcomes and no daily corre-
spondence between the model and observations should
be expected.

2.2.  Model input

Both theoretical and practical considerations affect the
selection of inputs to quantile regression. First, it is
important to verify that the two time series (simulated
and observed, or predictor and predictand) have some-
what similar distributions; the closer both distributions
are to Gaussian, the simpler the function relating the two
distributions. Even non-Gaussian distributions can some-
times be manipulated to mimic a Gaussian distribution;
here, in the case of precipitation, by taking the natural
logarithm of the daily wet day precipitation values.

To train the downscaling model, the observed record
must have an adequate length and quality of data. A min-
imum of 20 consecutive years of daily observations with
less than 5% missing data is usually needed in order
to appropriately sample from the range of natural cli-
mate variability at most of the station locations examined
here and to produce robust results without overfitting.
To challenge the downscaling model, two stations were
selected for this evaluation that had substantially less
data available (Bridgeport, WV with 78% and Moose-
head Lake, ME with 88% of daily data missing over
50 years).

2.3.  Model structure

The structure of the ARRM model is summarized in
Figure 1. The first step is to prepare the data by separating
it into 12 vectors by month such that a separate statistical
model can be built for each month. This accounts for
different weather patterns dominating any given region
at different times of the year that could alter AOGCM
biases relative to observations. Two weeks of overlapping
data on either side of each month are included to account
for future conditions that may lie outside the range of
a typical historical month. This extension also doubles
the use of each data point during the training process.
Each month’s time series is then reordered by rank to
create an asynchronous vector. Figure 2 shows AOGCM-
simulated (grid cell containing the weather station) versus
observed temperature for chronological and for sorted
data, illustrating how ranking of the inputs provides a
correlation between observations and model simulations
whereas matching by calendar date does not.

The second step in the ARRM model is to fit a regres-
sion function to the ranked values shown in Figure 2(b).
For most station locations and global models, a linear fit
(as used in Dettinger et al., 2004) is adequate within at
least the 20th—80th percentiles of the distribution (dark-
coloured line in Figure 3) with a high coefficient of
determination (R?). However, residuals are often large

Copyright © 2012 Royal Meteorological Society
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DOWNSCALE HISTORICAL AND
FUTURE PROJECTIONS

. .

Figure 1. Structure of the ARRM downscaling model. This figure is
available in colour online at wileyonlinelibrary.com/journal/joc

near the tails of the distribution that, depending on the
application, can be of greater interest to climate impact
studies than values at the centre of the distribution. Poly-
nomials of increasing order result in increasingly better
fits to the historical observations (not shown), but run two
serious risks: first, of overfitting, and second, of exhibit-
ing unnatural behaviour at the tails of the distribution
that could unrealistically predict lower observed temper-
atures for higher modelled values than for lower modelled
values, and vice versa.

Instead, we found that a piecewise linear regression
(light-coloured, segmented line, Figure 3) provided the
most consistent fit while accounting for biases in model
values near the tails of the distribution; biases that can
be markedly different than those simulated for values
near the centre of the distribution. Adding breakpoints,
or knots, allows for different slopes at different parts of
the distribution, in particular minimizing the residuals at
the tails of the distribution when compared with either a
linear or a polynomial fit.

R (R Development Core Team, 2012), the statistical
programming language used to build ARRM, has spline-
based functions such as bs and ns that can add break-
points to a regression. However, these functions require
the user to set the number of breakpoints manually and
then place the points at predetermined, evenly distributed,
quantiles. As illustrated in Figure 3, the ideal number of
breakpoints can vary broadly, depending on the charac-
teristics of model bias for a given month and/or loca-
tion. A new function was therefore required that would
optimize the regression model for each month by auto-
matically identifying the number and location of up to six
independent breakpoints. This piecewise linear regression
function is described next.

The third step in the ARRM model is to use the
statistical regression models, constructed from observed
and historical simulated time series, to downscale future

Int. J. Climatol. (2012)
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Figure 2. Monthly scatter plot of observed and AOGCM (CCSM3) simulated (nearest grid cell) daily maximum 1960-2009 January temperature
for Bridgeport, West Virginia, matched (a) by calendar date and (b) by rank.
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Figure 3. Scatter plot of observed versus AOGCM (CCSM3) simulated
daily maximum 1960-2009 January temperature for Bridgeport, West
Virginia (including half of previous and following months), ranked by
quantile. Dark-coloured line shows the results of a linear regression
on the data; lighter, segmented line shows the results of a piecewise
linear regression; and vertical grey lines identify knots in the piecewise
linear regression. This figure is available in colour online at wileyon-
linelibrary.com/journal/joc

projections. The resulting downscaled values must sub-
sequently be rearranged back into the original order to
retrieve the final product, a continuous chronological time
series of the downscaled values.

2.4. Piecewise linear regression function

The piecewise linear regression function developed for
ARRM is based on linear regression that iterates over
a moving window. For the majority of the distribution,
the window width remains fixed at a given percentage of
the total number of data points for that particular month.
As the concentration of data points near the tails of the
distribution is much sparser than at the centre, window
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width at the tails of the distribution decreases linearly to
a minimum width by the ends of the distribution.

This function requires four fixed settings: the per-
centage of data points in the fixed window width, the
minimum and maximum probabilities over which a fixed
window width is used, the minimum permissible width of
the window at the tails of the distribution, and the maxi-
mum number of breakpoints allowed. Optimal values for
these settings are a function of AOGCM bias, charac-
teristics of which differ from one variable to another.
In general, a fixed window width of 5% of the distri-
bution between probabilities of 0.1 <P <0.9, linearly
decreasing to a minimum width of either 2 °C or ten data
points (whichever is greater) for P <0.1 and P > 0.9,
is adequate for temperature as the relationship between
observed and modelled values tends to be relatively
linear over much of the distribution. For precipitation,
greater variability in AOGCM bias over the distribution
requires a wider fixed window width, on the order of
10%, between probabilities of 0.15 <P < 0.85, linearly
decreasing to a minimum of 5% of the mean value or
ten data points (again, whichever is greater) for P <0.15
and P > 0.85.

Up to six breakpoints are allowed in each regression
model. This number was determined on the basis of
two factors: first, visual testing by plotting downscaled
projections for the historical period for individual months
showed that more breakpoints tended to increase the risk
of overfitting, such as introducing shorter segments with
negative slopes, particularly for months with sparse data
or poor model performance, and second, months with
dense data rarely required more than six breakpoints
and often far less. The function begins the piecewise
regression at the 40th percentile, where the data point
at the 40th percentile is the largest value in the window
and moves up (to the highest quantile of the distribution)
from there. In other words, the moving window starts
with the X % data points below the 40th percentile, where
X equals 5 for temperature and 10 for precipitation.
The selection of the 40th percentile is to ensure that
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the middle part of the distribution is well covered by
a moving window. QR matrix decomposition is used to
fit a linear regression to the data in the window. The
R? value for each regression is recorded and saved in a
vector, and the moving window is shifted up one data
point towards the end of the distribution until it reaches
the 100th percentile. The first breakpoint is defined as
the central point of the window with the lowest R” value
of the vector, if the value of R? for that window is less
than the value for the entire time series. The R? values
on either side of that breakpoint are then blocked for
the width of the moving window and a new minimum
identified, for a total of up to three breakpoints in the
upper half of the distribution.

This process is repeated beginning at the lowest found
breakpoint, or if no breakpoints are found, at the 40th
percentile moving down to the Oth percentile. This time,
the moving window trails above the percentile. This
allows an R’ value to be assigned to each data point
in the monthly vector, from the first to the last. Setting
a minimum window width of ten points means that
breakpoints are not allowed to fall within the first and
last five points of the dataset.

Before the statistical model is finalized, slopes between
breakpoints are automatically reviewed. Breakpoints that
create a negative slope can cause lower AOGCM val-
ues to produce higher downscaled values than higher
AOGCM values. Breakpoints that create a slope close to
zero (—0.1 <slope <0.1) can create an unrealistic peak
of nearly identical values in the downscaled distribution.
Removal of a breakpoint causing a negative or ‘flat’ slope
will always have a detrimental effect on the R* value of
the regression fit, because the segment having the nega-
tive or ‘flat’ slope yielded the best fit, but improve the
realism and generalizability of the fit. Sometimes, when
AOGCM biases are particularly nonlinear, the removal of
negatives slopes can have a greater impact on the quality
of the fit than the impact of having a few data points with
downscaled values that decrease rather than increase for a
small interval within the distribution. Hence, the function
allows for negative or ‘flat’ slopes under two conditions:
if they are not the first or last segment in the regression,
and if they span less than five points. If these conditions
are not met, the breakpoint below the negative slope is
removed unless it is the first segment of the regression,
in which case the breakpoint to the right is removed. One
breakpoint is removed at a time and the process repeated
once the regression and new slopes have been recalcu-
lated to determine whether a new segment with a negative
slope has been introduced. This process is repeated until
all negative or flat slopes have been eliminated.

Once the breakpoints have been finalized, the regres-
sions are used to build a statistical model that performs
piecewise linear regressions, with the use of spline inter-
polations, between the monthly simulated and observed
data ordered by rank. This regression model can then
be used to downscale future values, similarly ordered by
rank, assuming stationarity in climate system feedback
mechanisms.

Copyright © 2012 Royal Meteorological Society

2.5.

As ARRM is a statistical model, there is a risk of
introducing unrealistic values especially at the tails of
the distribution, where data points are sparse and the
slope of the initial and/or final regression can be very
sensitive to a single extreme point. In some cases,
an observational data point may even be in error. An
example is the Global Historical Climatology Network
(GHCN) dataset for Hialeah, FL, which had a recorded
maximum temperature for 8 November 2003 with a
value of —17.8°C, 25°C lower than the second lowest
maximum temperature recorded for this station, and with
temperatures for the previous and following days of 29.4
and 30.0 °C, respectively. This erroneous point noticeably
affected the magnitude of predicted cold temperature
extremes for this location. Unrealistic values in the
original observations are therefore removed by the quality
control procedure described in Section 3, prior to their use
as input to the downscaling model.

Because of this sensitivity, downscaled extremes
(defined as lying below the Sth percentile and/or above
the 95th percentile of the distribution) that fall outside a
realistic range for each station are corrected separately,
by calculating the bias in percent difference between
the downscaled value and the minimum or maximum
observed value for that location. To avoid large biases that
can be caused by small differences between low values,
temperature is first converted to Kelvin and an arbitrary
large number (here, 250) is added to daily precipita-
tion values. For temperature, scaling is done by dividing
the downscaled value by 1+the bias when values fall
more than 3% below or above the lowest or highest
observed values (in Kelvin), respectively, or more than
2% above the highest observed precipitation value (with
250 added). For precipitation, the downscaling model in
some cases predicts values below zero. These are reset
to zero.

Bias correction

2.6. Variable-specific refinements

Although the downscaling model is purposely designed
to be applicable to any variable with a relatively sym-
metric distribution, predictors must be preselected for
each variable and there are some differences in the ini-
tial processing of each predictor that can improve the
performance of the model in downscaling.

Selection of predictors for temperature and precipita-
tion downscaling has been the subject of several com-
parative studies (Huth, 1999; Wilby and Wigley, 2000;
Widmann et al., 2003; Jeong et al., 2012). ARRM has
been designed to allow for user-selected predictors, if
desired. For the purposes of model evaluation and com-
parison, predictors were chosen to be the same variables
as the predictands: 2 m maximum and minimum tempera-
ture and 24 h cumulative precipitation. These are the most
frequently archived daily output from both CMIP3 and
CMIP5 AOGCMs; furthermore, comparison with upper-
air predictors for the stations in this study showed no con-
sistent improvement that would affect the performance of
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the downscaling model. For models that archive convec-
tive, total, and/or large-scale precipitation, the downscal-
ing model calculates the RMSE for the historical training
period between the observations and separate downscaled
values using each of the three predictors. The predictor
variable and corresponding regression model for the train-
ing period with the lowest RMSE for a particular month
is used to downscale future precipitation for that month
and station. This refinement significantly improved the
method’s ability to simulate precipitation over regions
that tend to experience more convective-type precipita-
tion, including the subtropics and mid-latitude summer.
Smoothing AOGCM output has been previously rec-
ommended (e.g. Raisanen and Ylhaisi, 2011), and it
has been suggested that the smoothing that results from
averaging may be one of the reasons why ensemble
AOGCM projections typically outperform any individual
model simulation (Knutti et al., 2010). Here, temperature
fields are smoothed using Empirical Orthogonal Func-
tion (EOF) analysis, retaining only the EOFs account-
ing for 97% of the original variance. Root-mean-square
errors (RMSEs) identified 97% as a generally appropriate
threshold, with both higher and lower thresholds resulting
in higher errors. This step improved model performance,
especially for inland stations with higher variance.
Compared to temperature, precipitation tends to dis-
play a greater amount of smaller scale variability. This
is likely one of the reasons why EOF filtering was found
to degrade rather than assist precipitation downscaling.
Precipitation is also a combination of a binary (wet/dry)
and a continuous non-Gaussian distribution that must be
transformed into a more symmetrical distribution before
it can be ranked by quantile. Dettinger ez al. (2004) used
the square root of daily precipitation as a predictor, but
we found that taking the natural logarithm of precipitation
achieves a more symmetric distribution. To address the
binary nature of the data, dry days must be omitted from
the regression. However, simulated and observed time
series of precipitation rarely contain the same amount
of precipitable days. To correct for any differences in
number of rainy days between observations and the sim-
ulated time series, the two time series are ordered by rank,
extracting the top number of values in each vector corre-
sponding to the number of rainy days in the shorter non-
zero time series (usually observations, because AOGCMs
tend to ‘drizzle’ or simulate many more low-precipitation
days than observed; e.g. Chen et al., 1996; Sun et al.,
2006; Perkins et al., 2007). Drizzle is also addressed by
setting downscaled precipitation amounts less than trace
(typically defined as 0.005 inches or 0.127 mm) to zero.
The fact that the downscaling process can only be
applied to precipitable days raises concerns regarding
model performance in extremely dry regions. Given the
typical variance of precipitation, to have a confidence
level of 95% there must be at least 57 samples in the
dataset (i.e. at least 57 wet days in each of the 12 monthly
time series that span the entire training period). This
value was determined by applying a simple sample size
calculation for linear and logistic regression following
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Hsieh et al. (1998). During the dry season in arid regions
the sample size can be insufficient, even for 50 years
of data including half a month on either side. If the
sample is insufficient, the model automatically expands
it by including an extra week’s data on either side of
that month (thus containing 3 weeks each of the prior
and subsequent months), repeating the process up to
a maximum of eight times until a sample size of at
least 57 is reached. If 16 weeks have been added and
the sample is still less than 57 but greater than 20, a
linear regression is used. If less than 20 (which, for a
training period of 50 years, would mean less than 1 day
in 2 years with measurable precipitation), all downscaled
values are set to zero for that month. This procedure
has been tested and produces reasonable downscaling of
historical precipitation in regions that are arid or semiarid.

The ARRM model was constructed in three distinct
phases to quantify the contribution of specific elements
to model performance. All phases build monthly models
that incorporate 2 weeks’ data on either side of the
target month to double the sample size, and all versions
prefilter the temperature and precipitation predictors as
described above before ranking by value. The difference
between the versions is the function used to fit the
quantile—quantile relationship between observations and
historical simulations. The first version applies a least
mean squares linear fit (using the function /m in R),
similar to that used in the SAR approach of Dettinger
et al. (2004). The second version applies the piecewise
regression function described above. The third version
also uses piecewise regression, but incorporates removal
of negative or flat slopes and bias correction near the
tails. Removal of negative slopes is not expected to yield
significant improvements in model performance, and in
some cases it may even degrade initial performance;
however, it is necessary to reduce the risk of unrealistic
statistical relationships between modelled and observed
values. The purpose of the comparison is not primarily to
demonstrate the superiority of the final model, but rather
to ensure that model performance is not overly degraded
by this step.

The three different versions will be referred to as
linear, simple piecewise, and full piecewise downscaling
models, respectively. The ability of these three versions
to downscale daily temperature and precipitation for 20
long-term stations in North America was evaluated using
the data and model simulations described next.

3. Data and simulations

3.1

Downscaling was conducted and tested using observed
daily minimum and maximum temperature and 24-h
cumulative precipitation amounts for 20 long-term North
American weather stations for the period 1960-2009.
Seventeen of the stations are distributed across diverse
climatic regions in the continental United States including
coastal, central, and mountainous regions; two stations

Observations
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are located in Canada; and one in Mexico (Figure 4).
Records were obtained from the GHCN (Peterson and
Vose, 1997).

Although GHCN station data have already undergone
a standardized quality control (Durre et al., 2008),
before using the station data for downscaling they were
filtered using a quality control algorithm to identify and
remove (replacing with ‘NA’) erroneous values in the
GHCN database. This additional quality control step
included three tests for errors, removing data on any
days where the daily reported minimum temperature
exceeds the reported maximum, any temperature values
above (below) the highest (lowest) recorded values for
North America (=50 to 70°C) or with precipitation
below zero or above the highest recorded value for the
continental United States (915 mm in 24 h), and repeated
values of more than five consecutive days with identical
temperature or non-zero precipitation values to the first
decimal. Additionally, an erroneous value was found for
Hialeah, FL, of —17.8°C on 8 November 2003 (with
temperatures of 29.4 °C the previous day and 30.0 °C the
following day), which was removed.

3.2. Atmosphere—ocean general circulation models

Model output from four AOGCMs was used to eval-
vate the downscaling model. The models chosen for
this study are all part of the Coupled Model Inter-
comparison Project version 3 (Meehl er al., 2007): the
National Center for Atmospheric Research Community
Climate System Model version 3 (CCSM3; Collins et al .,
2006), the National Oceanic and Atmospheric Admin-
istration/Geophysical Fluid Dynamics Laboratory Cli-
mate Model version 2.1 (GFDL CM2.1; Delworth et
al., 2006), the United Kingdom Met Office Climate
Model version 3 (HadCM3; Pope et al., 2000), and
the Department Of Energy/National Center for Atmo-
spheric Research Parallel Climate Model (PCM; Wash-
ington et al., 2000). Previous studies (e.g. Gleckler et
al., 2008; Stoner et al., 2009; Rusticucci et al., 2010)
show that these models are able to represent key fea-
tures of atmospheric variability including teleconnection
patterns, extreme temperature and precipitation, as well
as other climate metrics. A description of the models is
provided in Table I

3.3.

Historical AOGCM simulations correspond to the CMIP
20th Century Climate in Coupled Models’ or 20C3M
total forcing scenarios. These scenarios include forc-
ing from anthropogenic emissions of greenhouse gases,
aerosols, and reactive species; changes in solar output;
particulate emissions from volcanic eruptions; changes in
tropospheric and stratospheric ozone; and other influences
required to provide a complete picture of the climate over
the last century. Where multiple simulations were avail-
able, the first was used here (run 1).

To represent a broad range of alternative climate
futures, simulations corresponding to the IPCC Special

Scenarios

Copyright © 2012 Royal Meteorological Society

Report on Emission Scenarios (SRES) higher (Alfi) and
lower (B1) emission scenarios were used (Nakicenovié
et al., 2000). These scenarios describe internally consis-
tent pathways of future societal development and cor-
responding emissions, with atmospheric CO, concentra-
tions reaching approximately 550 ppm (B1) and 990 ppm
(Alfi) by 2100.

20C3M simulations only cover the period 1960-1999,
in order to have a longer range of historical simula-
tions we extended this period by 10years by including
2000-2009 simulated output from the A2 SRES scenario.
We find this to be a reasonable approach because the
inertia of the climate system delays its response to forc-
ings from increased greenhouse gasses and other factors
identifying each scenario and there is not much differ-
ence between the scenarios over the first decade of the
century (Stott and Kettleborough, 2002).

4. Model evaluation

4.1.
series

Creation of independent simulated historical time

To evaluate the three versions of ARRM (linear, simple
piecewise, and full piecewise), 50 years’ worth of data
and historical total forcing simulations from 1960 to
2009 were used to build downscaling models for daily
temperature and precipitation for 20 long-term weather
stations across North America. N-fold cross-validation,
or jackknifing, was used whereby the downscaling model
was trained on all but one of the years, then used to
predict values for the remaining year. ARRM builds a
separate model for each of the 12 months of the year, so
this process was repeated until 600 independent 1-month
simulated daily time series had been generated for each
location, independent of the observations used to train
the statistical model. These were then combined into a
single 50-year time series for evaluation.

Use of cross-validation in creating the historical sim-
ulated time series to be evaluated against observations is
a crucial aspect of the evaluation. If the statistical model
had been trained on all 50years and then used to pre-
dict those same 50 years, comparing the resulting time
series with observations would simply reflect the abil-
ity of the regression function to fit the data. The results
of such an evaluation would be improved by overfit-
ting, for example, by allowing the piecewise regression
function to fit an infinite number of knot points to the
quantile—quantile relationship. In contrast, by generat-
ing an independent time series, the evaluation instead
reflects the ability of the model to recreate observa-
tions that were not used to train the model. The results
of such an evaluation are degraded by overfitting that
makes the model less generalizable. The split-sample
approach, whereby observational data are divided into
a training and evaluation period, is commonly used to
evaluate statistical downscaling methods in the litera-
ture. The ability of the statistical model to reproduce
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Figure 5. Probability distributions for Half Moon Bay, CA, 1960—2009 observed daily maximum temperature (black) and AOGCM (left column),
training (middle column), and cross-validation (right column) simulated daily maximum temperature using linear (top row), simple piecewise
(middle row), and full piecewise (bottom row) regression models. This figure is available in colour online at wileyonlinelibrary.com/journal/joc

observed natural variability at a given location, how-
ever, depends on the degree to which it is able to sam-
ple from that variability in both training and evaluation.
The split-sample approach limits the sample size of both
the training and observation periods (typically, N/2 years
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each), whereas the jackknifed cross-validation approach
used here, with a training period of N — 1 years and an
evaluation period of N years, more closely approximates
the skill of the full dependent sample model that will
be used to downscale future projections. As the purpose
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Table I. Summary of key characteristics of AOGCMs used, including acronyms, host institution, as well as atmospheric and
oceanic resolution.

Model acronym Host institution

Atmospheric resolution Oceanic resolution

CCSM3 NCAR (USA)
GFDL-CM2.1 NOAA/GFDL (USA)
HadCM3 UK Met Office (UK)
PCM NCAR (USA)

1.4° x 1.4° 1.125° x 0.43°
2.0° x 2.5° 0.9° x 1.0°
2.5% x 3.75° 1.25% x 1.25°
2.81° x 2.81° 1.0° x 1.0°

of downscaling is to ‘recreate’ future conditions that
cannot be used to train the model, we argue that the
type of evaluation done here is more relevant to assess-
ing the performance of a downscaling model. This is
somewhat similar to a bootstrapping approach (Li et al.,
2010).

4.2. Evaluating temperature downscaling

The overall skill of the downscaling models is assessed
in terms of their ability to reproduce the observed annual
distribution (through comparing probability distribution
functions), the RMSEs compared to observations, and
the absolute value of the bias in the 0.1th, 1st, 10th,
25th, 50th, 75th, 90th, 99th, and 99.9th quantiles. Model
projections are also compared (although not evaluated)
for end-of-century under the SRES Alfi (higher) and B1
(lower) emissions scenarios.

To gain a qualitative perspective on the downscaling,
we first compare observed, AOGCM-simulated (nearest
grid cell), downscaled (training period), and downscaled
(independent evaluation period) maximum and minimum
temperature distributions for the coastal location of Half
Moon Bay, CA (Figures 5 and 6), for which the simulated
and observed temperature distributions differ noticeably.
The three rows correspond to the three versions of the
downscaling model (linear, simple piecewise, and full
piecewise). The three columns show AOGCM predic-
tions, predictions from training the downscaling model on
all 50years of data, and the independent cross-validation
predictions, derived by the method described above. Iden-
tical figures for the remaining 19 stations and other graph-
ics not included in this publication are available online
(http://temagami.ttu.edu/arrm/).

For this location, all AOGCMs simulate a wide dis-
tribution for maximum temperature with two peaks near
10 and 28 °C (Figure 5). In contrast, the distribution of
observed maximum temperatures is narrow and only has
one peak near 17 °C. The HadCM3 distribution is addi-
tionally skewed towards lower temperatures. One reason
for the large difference between observed and simulated
distributions is due to the landmask in the AOGCMs,
which can have anything from 0 to 100% land fraction
in coastal grid cells, differing between AOGCMs. Table I1
gives land fraction values for grid cells used to downscale
stations near the coast. The grid cell downscaled to Half
Moon Bay has only partial land coverage in most mod-
els (PCM: 15.2%, CCSM3: 53.8%, and GFDL-CM2.1:
84.2%) and is a complete ocean grid cell in the HadCM3
model. Predictions might be improved by selection of a

Copyright © 2012 Royal Meteorological Society

Table II. Fraction of land (in percent) of AOGCM grid cell used
to downscale each station for the four AOGCMs. Values are
given only for stations near a coast as the percentage of land
in grid cells used to downscale inland stations were all 100%.

Station CCSM3 GFDL-CM2.1 HadCM3 PCM
Cameron, LA 85 66 100 42
Garden City, NY 91 84 100 44
Half Moon Bay, CA 54 84 0 15
Hialeah, FL. 31 10 0 55
Loreto, MX 2 37 0 40
Moosehead Lake, ME 100 95 100 100
Phoenix, AZ 100 100 100 94
Vancouver, BC 100 100 100 88
Wilmington, NC 51 39 100 89

different AOGCM grid cell; however, the purpose here
is not to generate optimal predictions but rather to test
the ability of the downscaling method to correct AOGCM
output. From that perspective, using a near-shore grid cell
to simulate coastal conditions represents a greater chal-
lenge for the model, and all three versions of the down-
scaling model are able to approximate observations for
these grid cells, narrowing the simulated distribution and
removing the double peaks. The linear model is able to
capture the general shape of the observed distribution, but
underestimates high temperatures towards the tail of the
distribution. This is improved upon by the simple piece-
wise model and almost completely resolved by the full
piecewise model. There is little difference between the
results for the training (middle column) and independent
(last column) predictions, indicating that the downscal-
ing model does not overfit and is successful at simulating
observed conditions outside the training period.

There are some differences between maximum and
minimum temperature (Figure 6). First, AOGCM distri-
butions for minimum temperature more closely resem-
ble observed, although generally skewed towards cooler
when compared with warmer values. Second, all three
downscaling models perform well at the tails of the dis-
tribution, but the peak of the distribution is better resolved
by the two downscaling models that apply the piecewise
regression technique.

Figure 7 compares the RMSE in maximum temperature
across the entire distribution for all 20 stations. Apply-
ing any of the three downscaling models greatly reduces
RMSEs compared with raw AOGCM outputs, which in
most cases are an order of magnitude larger. Moreover,
the downscaling process is able to transform a broad
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Figure 6. Probability distributions for Half Moon Bay, CA, 1960—2009 observed daily minimum temperature (black) and AOGCM (left column),
training (middle column), and cross-validation (right column) simulated daily minimum temperature using linear (top row), simple piecewise
(middle row), and full piecewise (bottom row) regression models. This figure is available in colour online at wileyonlinelibrary.com/journal/joc

range of AOGCM predictions into distributions closely
resembling observed. For all 20 stations, downscaling
reduces the RMSE of simulated historical values from 2
to 8 °C down to less than 0.5 °C. Refining the downscal-
ing technique by applying piecewise regression further
decreases the residuals. There is little difference between
RMSE:s of the simple piecewise and full piecewise regres-
sion methods as improvements due to bias removal tend
to be offset by removal of negative slopes. Results for
minimum temperature (not shown) are similar, except
that the RMSE values for AOGCMs tend to be lower,
confirming the indication from Figures 5 and 6 that
these AOGCMs are generally better at simulating daily
minimum when compared with maximum temperatures,
regardless of location.

The results of this evaluation are summarized by
scatter plots of downscaled versus AOGCM RMSE
(Figure 8). Applying downscaling reduces the spread
of RMSEs noticeably with the linear version of the
downscaling model, and even further when piecewise
regression is added to the downscaling model, with
RMSE values below 0.5°C for temperature and below
10 mm for precipitation. For both simple piecewise and
full piecewise downscaling models, the majority of points
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are clustered between 0.2 and 0.3°C for temperature
and between 1 and 5Smm for precipitation (the far
outlier for precipitation for the simple model is HadCM3
downscaled for Phoenix, AZ, with an RMSE value of
76.2 mm), indicating that this level of bias is most likely
the limit to the ability of this particular type of statistical
downscaling model, within the range of natural variability
represented in the training dataset.

The third measure used to evaluate the downscal-
ing methods is by examining the bias in the 0.1th, Ist,
10th, 25th, 50th, 75th, 90th, 99th, and 99.9th quantiles
(Figure 9). Bias in AOGCM output is generally an order
of magnitude larger than bias downscaled output, regard-
less of downscaling technique. There is no consistent
tendency for AOGCM biases to be larger for certain
quantiles, but downscaled quantiles tend to be slightly
larger for extreme when compared with median quantiles.

Figure 9 also shows the percentage missing data in
the observations for each station. Even for locations with
a very high percentage of missing data (Bridgeport and
Moosehead Lake) downscaling is able to improve on
AOGCM output, although the resulting biases reflect the
uncertainty from the very small sample size of the data
used to train the statistical models.

Int. J. Climatol. (2012)
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Comparing the reduction in biases in the lowest,
middle, and highest quantiles of maximum temperature
achieved by downscaling from AOGCM outputs for the
cross-validation results shows that using the linear down-
scaling method noticeably reduces the range in bias rel-
ative to AOGCM output for the median quantiles, but
not for more extreme quantiles (Figure 10; results for
minimum temperature are similar, not shown). Incorpo-
rating piecewise regression makes little difference to the
50th quantile when compared with the linear model, but
significantly reduces biases in more extreme quantiles.

Copyright © 2012 Royal Meteorological Society

This suggests that the piecewise regression technique’s
primary improvement for temperature, compared with a
linear model, is in downscaling extreme values.

4.3. Evaluating precipitation downscaling

To gain a qualitative perspective on precipitation down-
scaling, we first compare observed, AOGCM-based, and
downscaled distributions of the natural logarithm of pre-
cipitation for 1960-2009 for Kentland, IN (Figure 11).
The left column of plots shows the tendency of AOGCMs
to drizzle on the left-hand side of the distribution

Int. J. Climatol. (2012)
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and underestimates the magnitude of high-precipitation
extremes on the right-hand side of the distribution (e.g.
150 vs 400 mm). The AOGCMs also fail to simulate
the double-peaked distribution common to many stations,
including Kentland.

The linear version of the downscaling model corrects
the lower tail, partly corrects the higher tail (although
it introduces some very high-precipitation values), and
does not correct for the two peaks in the distribution.
Incorporating piecewise regression resolves the peaks
but introduces artificially large extreme values that are
corrected in the full piecewise method that includes bias
correction.

Figure 12 compares RMSE values for all 20 stations
between observations, AOGCM output, and downscaled
simulations for the evaluation period. For almost all loca-
tions, applying the linear downscaling model increases
RMSEs relative to AOGCM output. This is most likely
due to the linear model simulating extreme values that
are too high but carry more weight in the overall RMSE
calculations. Piecewise regression corrects the high-end
bias and in almost all cases reduces RMSE relative to
AOGCM output.

Absolute bias (in percent) in the same nine quantiles as
used for temperature (Figure 13) shows that for all nine
quantiles, biases are generally small, for the full model

Copyright © 2012 Royal Meteorological Society

the bars are barely visible for most stations for all nine
quantiles. Plotting real-value quantile biases for the 0.1th,
50th, and 99.9th quantiles (Figure 14) shows again that
biases are very minimal for the lower and middle quan-
tiles, with larger values for the highest quantile. AOGCM
biases in the 99.9th quantile are nearly all negative, i.e.
AOGCMs underestimate extreme precipitation accumula-
tion in almost all 20 locations examined here. This is not
surprising, given that AOGCM values are averaged over
a large area whereas observations are for point sources.

5. Future projections

The purpose of most downscaling models is to gen-
erate future projections more representative of individ-
ual locations than current AOGCMs can provide with
grid cell-sized information. Here, we compare the results
of AOGCM simulations with ARRM downscaled future
projections using the entire historical period (1960—-2009)
to train each model.

5.1.

Figures 17 and 18 show the change in downscaled
versus raw AOGCM daily maximum temperature for
2070-2099 relative to the historical period observations

Maximum temperature
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(1960-2009) for the three temperature downscaling mod-
els (linear, simple piecewise, and full piecewise) and
0.1th, 50th, and 99.9th quantiles. Under the higher
Alfi scenario (Figure 15), the most obvious difference
between raw AOGCM versus downscaled future changes
is that downscaling produces only positive changes (i.e.
increases) in all three quantiles illustrated [with the
exception of one station (Half Moon Bay, CA) for the
linear model and 99.9th quantile], whereas raw AOGCM
changes are both positive as well as negative for these

Copyright © 2012 Royal Meteorological Society

three quantiles, indicating that the raw output projects
warming for some locations and cooling for others at the
end of the century. For the lower B1 scenario (Figure 16),
more stations also show warming at the end of the century
after downscaling compared with raw AOGCM results,
especially for the middle and upper quantiles. Some cool-
ing is projected for the lowest quantiles, indicating that
some stations might see a wider distribution of daily max-
imum temperature at the end of the century with more
extremes in both ends of the distribution.

Int. J. Climatol. (2012)
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Figure 17 shows the mean AOGCM absolute
2070-2099 daily maximum temperature changes, rela-
tive to 1960-2009, in each of the nine quantiles for the
Alfi and B1 scenarios for raw (light-coloured bars) and
downscaled output (dark-coloured bars). There is overall
a general agreement among the 20 stations that a greater
change in the 50th quantile is projected for the Alfi sce-
nario than for the B1 scenario (Loreto, MX, and Hialeah,
FL, being the only exceptions — note that these stations
also have low land fraction in all four AOGCMs). How-
ever, there is no general tendency for the mean change
to be more or less for downscaled versus raw AOGCM
output, with some locations, such as Atlanta, GA, and
Bridgeport, WV, showing a larger change projected for
the Alfi scenario than for the B1 scenario (Loreto, MX,
and Hialeah, FL, being the only exceptions). Similarly,
projected changes in higher quantiles from raw AOGCM
can be higher than downscaled for certain locations
and lower for others. This indicates that downscaling
produces results specific to each location, as opposed to
the more general AOGCM grid cell output.

5.2. Precipitation

Figure 18 shows the 2070-2099 relative to 1960-2009
raw AOGCM versus downscaled precipitation changes in
the 0.1th, 50th, and 99.9th quantiles for the three versions

Copyright © 2012 Royal Meteorological Society

of the downscaling model for the Alfi scenario, given
as RMSE differences. Unsurprisingly, there is less than
I mm change in predicted changes for the 0.1th quantile
for all 20 stations for both raw AOGCM and downscaled
projections. The reason for the fixed RMSE values for the
0.1th quantile for the raw AOGCMs is due to weather
stations not reporting frace precipitation, which is set
at 0.005 inches (0.127 mm). The higher frequency of
low precipitation events, compared with higher precip-
itation events, in most locations causes the 0.1th quantile
to almost always equal to the lowest recorded or simu-
lated precipitation value. The lowest simulated value in
AOGCMs, when rounded to the nearest 2 decimals, is
0.01 mm, because AOGCMs do not allow for ‘trace’. All
but one stations have a lowest value of 0.2 mm (when
converted from inches), whereas one station (Bridgeport,
WYV) has 0.1 mm as the lowest recorded value, which is
the cause for that station not being in agreement with the
others in the bias plot (Figure 18). Under both scenar-
ios, AOGCM outputs project little to some (up to about
8 mm) decrease in the amount of precipitation compris-
ing the median quantile, whereas when downscaled the
same quantile shows less than 2mm change from cur-
rent conditions, with few exceptions, for both scenarios.
The largest change is in the 99.9th quantile for both sce-
narios, with up to several hundred millimetres change

Int. J. Climatol. (2012)
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from current extreme conditions. For raw AOGCM pro-
jections, future extreme precipitation amounts appear to
have decreased, whereas when downscaled, the same
locations show a large increase in precipitation extremes,
especially for the Alfi scenario (Figure 18). This is
most likely due to poor simulation of precipitation at
the local scale by AOGCMs and is corrected by apply-
ing the statistical downscaling model, which is trained
on historical temporal precipitation variability for each
location. The linear version of the downscaling model
produces very large, up to about 1750 mm, increases in
extreme precipitation events, whereas the full piecewise

Copyright © 2012 Royal Meteorological Society

downscaling model produces more moderate, but still
large — up to about 300 mm increases in extreme events.
The numbers are very similar, although slightly smaller,
for the B1 scenario (not shown here, but available at
http://temagami.ttu.edu/arrm/).

Absolute precipitation changes for the 99th and 99.9th
quantiles are shown in Figure 19 for both A1FI and
B1 scenarios, averaged across all four AOGCMs. For
some stations, such as Hialeah, FL, Loreto, MX, and
Vernon, AL, there is a substantial difference between
extreme event projections for raw versus downscaled
AOGCMs, with the raw AOGCM generally projecting
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This relationship is shown for linear, simple piecewise, and full piecewise downscaling methods. This figure is available in colour online at
wileyonlinelibrary.com/journal/joc

larger absolute changes, compared with present condi-
tions, than downscaled projections. The results of the
cross-validation evaluation suggest that more confidence
could be placed in the downscaled projections when com-
pared with raw AOGCM output, because downscaled
projections are tailored to each individual location.

6. Conclusions

The ARRM is an empirical statistical downscaling model
capable of downscaling local projections of temperature
and precipitation to both station-based observations and
spatially gridded observations. Quantile regression, the
method on which ARRM is based, is unique in that it
builds a regression model based on matching the quantiles
of the observed and simulated time series as opposed
to matching corresponding day-to-day data points, which
is the basis for many other regression-based statistical
downscaling studies (Wilby et al., 1998; Huth, 1999,
2002; Wilby and Wigley, 2000; Huth et al., 2001; Boé
et al., 2007; Kostopoulou et al., 2007). ARRM adds to
this by using a piecewise regression model instead of
a straight linear regression, which improves its ability
to simulate more extreme temperatures and precipitation,
one of the major issues with other downscaling methods
(Huth, 1999; Goodess et al., 2012).

Copyright © 2012 Royal Meteorological Society

The downscaling model was evaluated based on cross-
validation of three different (linear, simple piecewise,
and full piecewise) versions of both the temperature and
precipitation models. Each version was evaluated in terms
of three different quantities: the distributions, giving a
visual image of the skill each model; the RMSE; and
bias in a range of quantiles.

The addition of piecewise regression, instead of
straight linear regression, was found to have the largest
impact on the performance of the method. The largest
biases were found to be near the tails of the distribu-
tion, primarily due to data sparseness. Some sensitivity
to station location was found in the linear versions of the
downscaling model, but the addition of piecewise regres-
sion was able to eliminate much of this.

For future projections, the spread among projected
temperature increases is generally narrower for down-
scaled temperature compared with raw AOGCM projec-
tions for the three quantiles shown, with more stations
showing positive temperature changes after downscaling
than before, for both higher Alfi and lower Bl scenar-
ios. Downscaled projections of precipitation show smaller
changes for the 50th quantile than raw AOGCM projec-
tions, for both Alfi and B1 scenarios, but slightly larger
changes in extreme events, with projected changes being
generally greater under the Alfi scenario than the Bl
scenario.
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Figure 19. Absolute bias in the 99th and 99.9th quantiles between

2070-2099 simulated and 1960-2009 observed daily precipitation

accumulation. Values are averaged across the four AOGCMs. This figure is available in colour online at wileyonlinelibrary.com/journal/joc

Evaluating the ability of ARRM to reproduce observed
temperature and precipitation at 20 stations across North
America shows that the statistical downscaling model is
able to reproduce values from the 0.1th to the 99.9th
quantiles with biases generally below 1°C and 5 mm.
Downscaling future projections can alter the sign of
AOGCM-simulated changes and usually narrows the
range of projected changes across multiple AOGCM
simulations.

The ultimate purpose of the ARRM framework is
to allow for user selection from a broad range of
predictors and predictands to efficiently downscale either
point source or gridded observations of any observed

Copyright © 2012 Royal Meteorological Society

climate variable with a Gaussian-like distribution that
can be predicted from large-scale AOGCM output fields.
Model performance for station-based temperature and
precipitation downscaling appears sufficient to support
continued development of such a generalized model.
Future work will describe the application of this model to
gridded datasets and to downscaling solar radiation and
relative humidity.
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